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Abstract

The present thesis studies the problem of scattering of large-scale waves by surface cur-

rents in the ocean. It has been known for more than a century that corresponding linear

equations governing propagation of small amplitude waves across the shear flow contain

critical layer singularities (Rayleigh [74]). And more than 40 years ago it was established

that propagating waves can effectively interact with the mean flow at such points. As the

result, the waves can be partly absorbed (Booker & Bretherton [8]) or over-reflected (i.e.

amplified) (Jones [40]). A special case of this phenomenon, when amplification is infinitely

strong, is traditionally referred to as resonant over-reflection. Physically the latter cor-

responds to spontaneous emission of waves by the current. Resonant over-reflection was

poorly studied in the past with only a few cases reported in the literature. The aim of

this study is to fill this gap and clarify the nature of the phenomenon.

We examine scattering of inertia-gravity gravity waves by zonal currents within the

reduced gravity rotating shallow water model and Rossby-wave scattering by “two-jet”

currents on the quasi-geostrophic β-plane. In both cases reflection and transmission co-

efficients were calculated numerically for the case when mean flow velocity profiles are

approximated by Bickley jets.

Resonant over-reflection was found to occur within these two models. We proposed a

plausible physical interpretation of the phenomenon as a “resonance” of a wave trapped

between two containing potential barriers. It is further demonstrated that, generally,

resonantly over-reflected waves are always marginal to radiating instabilities, and hence,

indicate when unstable shear flows can generate temporally growing propagating waves

that carry energy into the far field. The importance of the obtained results is connected

to investigation of sources and distribution of waves in the ocean and atmosphere.
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Chapter 1

Introduction

An ocean traveler has even more vividly the impression that

the ocean is made of waves than that it is made of water.

The Nature of the Physical World, Cambridge (1929)

Arthur S. Eddington, English astronomer and physicist

Atmospheric winds and ocean currents directly impact many human activities as they

shape the environment we exist in. For instance, winds move air and drag clouds along.

And obviously, understanding these motions is the essential to be able to forecast weather

and climate which makes up the general motivation for this study. In addition, accurate

information on atmospheric and ocean circulation is necessary for safe and cost effective

aviation, shipping and fishing services.

More indirectly, but no less importantly, ocean currents influence atmospheric pro-

cesses and Earth’s environmental system in general. The main mechanism is redistribution

of heat contained within the vast amounts of moving water. For instance, the presence of

the Gulf Stream makes British Isles, Central Europe and Scandinavia much warmer and

humid place than it would be otherwise. If it ever stopped flowing, Ireland, known as the

Emerald Isle, would have weather conditions similar to these in Iceland and Canada.

The goal of this work is to make a contribution to the over century-long mathe-

matical studies of the extremely complex ocean-atmosphere system. The problem at

hand addresses some aspects of wave-mean flow interaction with application to eastward

(westward)-flowing ocean surface currents, such as, for example, the eastward Gulf Stream

extension, Kuroshio extension and Antarctic Circumpolar Current. New general analytical

findings as well as numerical results for specific problems were obtained.
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Heavy geophysical specificity of the problem obliges the author to present a brief

review of the subject before giving an outline of the considered problem, major results

and thesis structure. This includes discussion of such objects as currents, winds, waves

and mechanisms of their interaction. We also describe some classical geophysical models

which we used in our study. The reader already familiar with the abbreviation GFD and

fundamentals of the science can skip the next section (§1.1) with no damage to reading

experience.

1.1 Background of the study

The atmosphere and ocean has so many common features that it is reasonable to study

them together. Mathematically both can be perceived as a thin layer of stratified fluid on a

rotating sphere. Hence, many models of geophysical fluid dynamics (GFD) can be applied

to study motions in both the ocean and atmosphere. And even though the problems

considered here are formulated in oceanological context the results can be directly extended

to the case of atmosphere.

Generally speaking, GFD is the science of all types of fluid motion naturally occurring

on the planet on all space and time scales. However, it is most useful to studies of

large-scale phenomena in the ocean and atmosphere, such as the circulating currents or

cyclonic/anticyclonic vortices. And exactly in these cases the similarities in the ocean and

atmosphere dynamics are the most striking.

The focus of GFD is to examine the general physical mechanisms behind the observed

motions rather than to model in details each specific phenomena. Hence, to avoid compli-

cations various approximate models that retain only essential parameters in the governing

partial differential equations (PDEs) are derived and employed. If needed these models can

be adjusted to include additional parameters (e.g. moist convection) to meet the require-

ments of weather and climate forecasting, weather hazards prediction and oceanographic

services.

Some basic ocean-atmospheric observed phenomena, cornerstone premises and classical

models of GFD which provide necessary physical background for this work will be discussed

in this chapter.
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1.1.1 Surface ocean currents and atmospheric winds

Surface currents in the open ocean, far from the influence of land, constitute one of the

central objects of this study. Here their origin is explained; and also, major surface currents

found on the Earth and their typical characteristics are described.

Ocean currents are primarily driven by two mechanisms: ground level winds and den-

sity gradients. The latter give rise to deep slow currents which we do not consider here.

Prevailing winds, on the other hand, constitute the fundamental forcing for the faster sur-

face ocean currents. This fact accounts for the observed similarity of the maps of winds

in the lower atmosphere and surface ocean currents at a global scale.

(a) Without the Earth’s rotation. (b) With the Coriolis effect due to the Earth’s ro-
tation.

Figure 1.1: Convective loops and prevailing winds in the lower atmosphere. Source [91].

The winds are formed and shaped by two primary forces: solar radiation and the

Earth’s rotation. Uneven heating of the Earth’s surface results in atmospheric convection

which is the root cause of all winds on the planet. Observations show that three circulation

cells exist between the equator and each pole (Fig. 1.1a).

The Coriolis effect tilts winds from their intended South-North direction: any hori-

zontal flow gets deflected to the right in the northern hemisphere and to the left in the

southern hemisphere. Combining the convective motion with the Coriolis effect we dis-

cover the trade winds at tropical latitudes, and westerlies at mid latitudes which agree

with observations (Fig. 1.1b). These winds entrain via friction ocean water and drive

surface currents in the ocean.
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Figure 1.2: Idealized surface currents and real subtropical gyres. Source [91].

In their turn surface currents are again deflected due to the Coriolis effect. Hence, we

develop westward-flowing equatorial currents and eastward-flowing currents at mid lati-

tudes. On the real-life Earth these currents run into continents and are forced to close the

loop, forming so-called gyres (Fig. 1.2). Each gyre comprises of approximately two zonal

currents: a westward-flowing equatorial and an eastward-flowing current in mid-latitudes;

and two meridional coastal currents: one poleward-flowing at the western boundary and

one at the eastern boundary, flowing towards the equator. Note that throughout this work

the case of zonal surface currents will be considered even though the surface gyres can be

assumed to flow zonally (i.e. from west to east or vice versa) only on a part of their path.

Although the winds strongly affect the surface layer, their influence usually does not

extend deeply. Typically, speed of a surface current decays with depth so that motion

below 1000m is negligible. The fastest currents, such as the Gulf Stream and Kuroshio

Current, have maximum speeds up to 2.5m/s and their width is of order 100 km.

Major surface ocean currents are shown on Fig. 1.3. The degree of their intensity and

importance is illustrated by the fact that the Gulf Stream and the Antarctic circumpo-

lar current carry about 5000 times more water than the Mississippi River. Some typical

parameter values are presented in Tab. 1.1. The provided information is presented in

numerous journal papers (for references see [98], [99]) and is based on velocity and hydro-

graphic observations, drifting buoy and satellite altimeter data and numerical simulations.

These observations suggest the following typical scales for wind-driven currents: the
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Figure 1.3: Major ocean currents and their volume transport (in sverdrups, where 1 Sv =
106 m3/s). Source [91].

Table 1.1: Seasonally averaged characteristics of major ocean surface currents. Source
[98], [99] (scientific websites devoted to ocean currents).

Parameter Gulf Stream Kuroshio Current Antarctic CP Current

L: Width 150 km 100 km up to 2000 km
D: Depth 800m 500m 2000-4000m
U : Max Speed 2m/s 1.5m/s 0.5m/s
M : Magnitude 30-150 Sv 20-80 Sv ∼ 130 Sv

vertical length scale D ∼ 500m, velocity U ∼ 1m/s and horizontal scale L ∼ 50 km (half-

width of the jet) if we wish to model fast currents such as the Gulf Stream or Kuroshio;

or D ∼ 2000m, U ∼ 0.2m/s and L ∼ 1000 km for the Antarctic Circumpolar Current.

1.1.2 Waves in the ocean and atmosphere

Many types of waves exist in the ocean and atmosphere as various restoring forces of

different nature are present in the system. It can be the surface tension, buoyancy or

something more exotic, like variation of the local components of the Earth’s rotation with

latitude. Hence, characteristics of the resulting waves (wavelengths and frequencies) are

also very different. A good review on waves in the ocean, mechanisms of their generation

and dissipation is provided in the book by LeBlond and Mysak [50]. In this thesis only

so-called internal gravity waves (IGWs) and Rossby waves are considered, for which a brief

overview is provided.
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Stratification & internal gravity waves

Uneven heating of the Earth’s surface influences the ocean stratification via changes in

its temperature and salinity. A schematic of the vertical profiles of temperature, salinity

and density is presented on Fig. 1.4. Thin upper layer (∼ 100m) of the ocean is well

mixed by the surface waves and is nearly uniform in z-direction. Below this mixed layer

lie the so-called main thermo-, halo- and pycnoclines which correspond to the region of

rapid decrease of water temperature, salinity and, as the result, sharp increase in density

over about 1000m. These profiles undergo considerable seasonal changes but are qualita-

tively similar and the resulting stratification is usually gravitationally stable (heavier fluid

underlies lighter). One important consequence of the stable stratification is that vertical

motions are constrained and horizontal motions are favoured.

Figure 1.4: Typical ocean stratification: temperature, salinity and density profiles. Source
[93].

Stable stratification supports internal gravity wave (IGW). If a fluid element is dis-

placed into a region with different density, gravity tries to restore the equilibrium resulting

in oscillations which constitute IGWs. They are similar to usual surface waves which all

of us daily observe on the free water surfaces. However, IGWs propagate within the fluid,

rather than on the air-water interface.

Wave clouds are often created in the atmosphere by ubiquitous IGWs (Fig. 1.5a). As

such disturbance propagates, the air rises up and cools at the crests of waves. If the layer

is humid enough the vapour condenses. And when air falls down to the wave trough, the

clouds evaporate. Resulting patterns can be observed with the naked eye in virtually any
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point on the globe.

(a) In the atmosphere (visualised by the
clouds). Source [94].

(b) In the ocean (visible due to reflection of sun-
light). Source [95].

Figure 1.5: Satelite images of IGWs.

Clearly, IGWs in the ocean depths cannot be observed directly. However, when prop-

agating they induce motion on the free ocean surface as the water above flows down the

crests and sinks into the troughs. This process creates regions of calm water directly above

the wave crests and rough water above the troughs. On the satellite image (Fig. 1.5b) the

latter appear as, respectively, brighter and darker stripes.

Note that these waves have much lower frequencies but larger wavelengths and am-

plitudes than their surface counterparts because the corresponding restoring force (buoy-

ancy) is weaker. Typical registered wavelengths of IGWs are ∼ 0.1-5 km; phase speeds are

∼ 1m/s. Their amplitudes can be as large as 100m in the deep ocean layers (LeBlond and

Mysak [50]).

Accelerations due to buoyancy in stratified fluid can be estimated with help of so-called

reduced gravity

gr = g
∆ρ

̺0
, (1.1)

where ̺0 is a characteristic value of the density ρ and ∆ρ is its variation over the vertical

scale D; g is the acceleration due to gravity. For the simplest case of two homogeneous

layers separated by a sharp interface (1.1) becomes

gr = g
ρ1 − ρ2
ρ1

, (1.2)
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where ρ1 and ρ2 are densities below and above the interface (ρ1 > ρ2). Then the charac-

teristic frequency of the IGWs is given with

N0 =

√

gr
D
. (1.3)

In a continuously stratified fluid no clear interface between stratum exists and IGWs

can propagate vertically as well as horizontally. Formula (1.3) can be extended for this

case as

N =

√

−g
ρ

dρ

dz
, (1.4)

where by convention z points upwards (−dρ
dz > 0). Note that Eq. (1.4) is the definition of

the Brunt–Väisälä frequency N (or buoyancy frequency) which is a local characteristic of

stratification. One can show (see [34]) that it gives the upper boundary for the range of

frequencies of the internal gravity waves in absence of rotation.

Typically, variations in density of ocean water in the main pycnocline are of order 0.1%

over 100m (see Fig. 1.4). Consequently, we obtain the following characteristic values

gr ∼ 0.01m/s2, N ∼ 0.01 1/s. (1.5)

The corresponding period of oscillations is about 10min which, hence, gives the lower

bound for IGWs periods.

Slow IGWs (with low frequencies ∼ 10−4 1/s and large wavelengths ∼ 10 km) are sig-

nificantly modified by the Coriolis effect. These waves are traditionally referred to as

inertia-gravity waves (same abbreviation IGWs will be used) or Poincaré waves (see Gill

[27]). They will be a subject of more detailed discussion in Chapter 4.

β-effect & Rossby waves

Another important type of waves we will touch upon in this work is Rossby waves. The

emergence of these peculiar planetary-scale waves is due to variation with latitude θ of

the local vertical component Ωn of the Earth’s angular velocity ~Ω. The Coriolis force in

the horizontal (which is the restoring force supporting the oscillations) depends on the

magnitude of so-called Coriolis parameter

f = 2Ωn = 2Ω sin θ. (1.6)
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The angular speed of the Earth’s rotation Ω =
∣

∣

∣

~Ω
∣

∣

∣ is about 7.29 × 10−5 rad/s. Then, for

example, within a region around the central latitude θ0 ∼ 45◦ (Europe, Northern America)

f ∼ 10−4 1/s.

While for some problems variation of the Coriolis parameter can be neglected, for

motions on longer length scales L (comparable to the Earth’s radius r0) it is important.

This phenomena is referred to as β-effect because the linear approximation of (1.6) is

traditionally written as

f = f0 + βy, (1.7)

where

f0 = 2Ω sin θ0, β =

(

1

r0

df

dθ

)

θ=θ0

=
2Ω

r0
cos θ0, y = (θ − θ0) r0. (1.8)

Typical values of the constant β (also known as the Rossby parameter) are ∼ 10−11 1/ms

in mid-latitudes. The extreme smallness of this parameter results in Rossby waves having

wavelengths & 500 km (even larger for the atmosphere) and periods∼ 200 d (corresponding

frequencies ≪ Ω) (see Gill [27]). Another important characteristic is that they always

travel from East to West.

Rossby waves can be easily observed in the atmosphere as large-scale meanders of the

otherwise zonal jet streams (Fig. 1.6a). When the undulation become very pronounced,

they detach the masses of cold or warm air that become cyclones and anticyclones. In this

way Rossby waves often determine the weather conditions at mid-latitudes.

The situation is different for the case of Rossby waves in the ocean where they exhibit

large (up to hundreds meters) displacements of isopycnal surfaces (i.e. surfaces separating

layers of equal density). These large variations of temperature in the upper ocean on the

scale of years and decades are thought to influence climatic variations on Earth.

However, the amplitudes of induced oscillations in the surface height are very small

(. 10 cm) (Fig. 1.6b). Moreover, the horizontal length scales are huge and propagation

speeds are slow (. 10 cm/s or, equivalently, . 20 km/d). All this makes oceanic Rossby

waves extremely difficult to observe with direct contact measurements (see the review [42]

of the evidence collected during 1970 through 1987).

Very little relyable data was available untill the recent emergence of satellite altime-

try (Chelton and Schlax [15]). For example, TOPEX/Poseidon satellites launched as a

joint mission between NASA and CNES were capable of measuring the height of the sea

surface to a precision of few centimeters (a malfunction ended normal satellite operations
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(a) In the atmosphere. Source [97]. (b) In the ocean. Source [96].

Figure 1.6: A schematic of Rossby waves

in January 2006). The planetary-scale oscillations are revealed when Sea Surface Height

Anomalies (the height as seen by the spacecraft minus the long-term average and tides)

are plotted for one zonal section as a function of longitude and time (Fig. 1.7).

1.1.3 Theoretical framework

In this section, some fundamental non-dimensional parameters that appear in GFD prob-

lems are introduced. The smallness of some of them allows the governing equations to

be considerably simplified. We discuss in layman terms origination of of such two basic

models: reduced gravity rotating shallow water (RGRSW) model on an f -plane and quasi-

geostrophic (QG) β-plane model. These models respectively support IGWs and Rossby

waves. Essentially, this section is an informal overview of what is done in Chapter 3

rigorously.

Length scales and plane approximation

Ocean motions we are interested in (surface currents, gravity and Rossby waves) have

horizontal scales L within the range 10 ∼ 1000 km (so-called mesoscales). When compared

with the typical vertical scale D and the Earth’s radius one notices

D ≪ L≪ r0. (1.9)
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Figure 1.7: Sea Surface Height and Hovmöller diagram. The diagonal (i.e. going from
bottom right to top left) alignments of crests and troughs correspond to Rossby waves
propagating to the west with time. Source [96].

Hence, two small parameters δ and ∆ representing the ratios of the length-scales can be

introduced

δ =
D

L
≪ 1, ∆ =

L

r0
≪ 1. (1.10)

Consequently, the fragment of the ocean under consideration can be described as a nearly

plane and shallow layer of stratified fluid. As the result, sphericity of the domain can

be neglected and the vertical momentum equation can be approximated with the hydro-

static equation. Within these approximations, motions are largely horizontal and the

corresponding pressure gradients are due to the surface elevation or density gradients.

Rossby number and geostrophy

As stated above, GFD studies “large-scale” phenomena in the ocean and atmosphere.

But how can one define what scale is sufficiently large? This term is usually attributed to

motions which are significantly influenced by the Earth’s rotation.

In a rotating coordinate frame “frozen” into the planet, the fictitious Coriolis force

appears. Its importance can be assessed with help of Rossby number Ro which compares
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the period of rotation of the earth and the time it takes for a fluid element moving with

speed U to cover the distance L

Ro =
U

f0L
, (1.11)

where f0 is the local value of the Coriolis parameter. By definition, a large-scale motion

has the Rossby number Ro . 1.

Figure 1.8: A geostrophic current in the ocean in Northern hemisphere. 1. Hot and light
water 2. Cold and heavy water. Source [92].

In the horizontal equation of motion the Rossby number estimates the ratio of the

inertial D~v
Dt and Coriolis forces 2

[

~Ω, ~v
]

acting on a fluid particle. Hence, when it is small

accelerations of fluid particles are negligible (the leading order approximation). The simpli-

fied equations represent the equilibrium between the Coriolis force and horizontal pressure

gradients. This is the case of so-called geostrophic balance and resulting velocity field is

geostrophic. Note that this approximation is inconsistent in the equatorial regions where

horizontal component of the Coriolis force vanishes.

In the ocean the horizontal pressure gradients appear due to swelling of the ocean

surface which in its turn is controlled by changes in water density (read temperature and

salinity). They drive the water downslope and the resulting motion is being deflected

by the Coriolis force. When Coriolis force and pressure gradient balance each other a

geostrophic current is formed in which water runs along and not across the lines of constant

pressure (Fig. 1.8).
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Burger number and Rossby radii

We prepare to investigate a system in which both currents (winds) and waves are present.

In classical fluid mechanics it is the Froude number defined as the ratio of a characteristic

flow velocity to a wave propagation velocity that is typically used to measure the impor-

tance of wave effects. When buoyancy (internal gravity) waves are considered the formula

becomes as follows:

Fr =
U√
grD

. (1.12)

Then, the Froude number can alternatively be perceived as a measure of inertia forces

when compared to buoyancy forces and, hence, characterize the strength of the density

stratification.

However, as mentioned above, the large scales of GFD phenomena motivate researchers

to gauge the magnitude of the vertical stratification against the Coriolis effect in the

horizontal. Their relative importance is given by the Burger number

Bu =

√
grD

f0L
=
Ro

Fr
. (1.13)

Note that an alternative definition of the Froude and Burger numbers is used sometimes

in which the terms on the right of (1.12) and (1.13) have been squared.

Now observe that the Burger number can also be written as

Bu =
Ri

d

L
, (1.14)

where so-called internal (or baroclinic) Rossby deformation radius is introduced

Ri
d =

√
grD

f0
. (1.15)

It thus represents the scale at which rotational and buoyancy effects are of equal impor-

tance (Bu = 1). According to (1.14) comparing the internal Rossby radius of deformation

and the horizontal length-scale of motion we can estimate the strength of buoyancy effects.

Similar reasoning leads to the introduction of the (barotropic) Rossby deformation

radius

Rd =

√
gD

f0
(1.16)

that characterizes the scale at which motion is equally affected by gravity (i.e. the influ-

ence of free surface elevation) and rotation. Generally, the term “barotropic” is associated
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with depth-independent motions of a homogeneous fluid layer. While “baroclinic” pro-

cesses include non-trivial stratification and depend on the z-coordinate. Note, that these

two lengths (1.15) and (1.16) will later be used as characteristic length scales in non-

dimensionalization.

Table 1.2: Secondary parameters of ocean surface currents specified in Tab. 1.1.

Parameter Gulf Stream Kuroshio Current Antarctic CP Current

δ ∼ 0.01 ∼ 0.01 ∼ 0.004
∆ ∼ 0.01 ∼ 0.007 ∼ 0.15
Ro: Rossby number ∼ 0.25 ∼ 0.3 ∼ 0.01
Bu: Burger number ∼ 0.4 ∼ 0.45 ∼ 0.1
Rd: Barotropic radius ∼ 900 km ∼ 700 km ∼ 1600 km
Ri

d: Baroclinic radius ∼ 30 km ∼ 20 km ∼ 50 km

Rough estimates for the values of the introduced parameters are presented in Tab. 1.2

for problems considering currents from Tab. 1.1. Observe two typical situations:

• Fast and narrow surface currents, such as the Gulf Stream and Kuroshio. Bu is of

order unity and L ∼ Ri
d. Hence, stratification (and related effects, such as IGWs)

should be taken into account. Although, β-effect (1.7) (and Rossby waves) are

unimportant.

• Slow and wide surface currents, such as the Antarctic Circumpolar Current. In

this case buoyancy-effects can be neglected (Bu ≪ 1 and IGWs are ruled out).

Although, L ∼ Rd and is of order of wavelengths of Rossby waves (also, Ro ≪ 1).

Hence, β-effect should be retained in the governing model.

Naturally, these two cases should be examined within two different models. Rigorous

derivations of these models they will be done in Chapter 3. The data presented in Tab.

1.1 and 1.2 justifies their validity and applicability.

Rotating shallow water model

In the first model actual density profile of the ocean is approximated with two homogeneous

layers via vertical averaging. Then so-called rotating shallow water (RSW) equation can

be obtained for the case of two layers which supports IGWs on the interface. Under

assumption that fluid moves much slower in the bottom layer (below the main thermocline)

than in the active top layer, this model simplifies to the reduced gravity rotating shallow
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water (RGRSW). The Coriolis parameter is assumed constant everywhere in the domain

f ≡ f0. This approximation which ignores the variation of the Coriolis parameter is

referred to as an f -plane. RGRSW equations will be used in Chapter 4 to examine the

interaction between IGWs and a surface zonal jet.

Although, a model which treats the actual stratification as a piecewise constant func-

tion may look crude it is complicated enough to describe important aspects of atmo-

spheric and oceanic motions. Multi-layered RSW models are widely used to simulate the

wind-driven circulation in the ocean and structure of the main thermocline. Their main

advantage is allowing large displacements of isopycnal surfaces. For example, the quasi-

geostrophic model with its underlying assumptions of small Rossby number and surface

displacement would be inapplicable.

Quasi-geostrophic model

Here we discuss a model appropriate in the second case (planetary scales; Bu, Ro ≪ 1).

Condition Bu≪ 1 allows us to neglect stratification and consider only barotropic motions.

Then one-layer RSW equation on a β-plane can be used in this case. And when the Coriolis

parameter f is given by (1.7) it supports Rossby waves which are inhibited within the f -

plane.

Smallness of the Rossby number prompts us to use the geostrophic approximation. Al-

though extremely useful and appealing in its simplicity, it is only a diagnostic relationship.

It does not compose a closed system of equations. Simply put, geostrophic approximation

is degenerate as any pressure field can yield a consistent geostrophic velocity and there is

no way to distinguish the correct one.

To resolve this difficulty a higher order approximation is necessary. This so-called

quasi-geostrophic (QG) approximation can be derived from the RSW equations on the β-

plane when the solution is expanded in asymptotic series in Rossby number. As expected,

the leading order approximation coincides with the geostrophic approximation. The next

order system yields a PDE for the surface elevation (i.e. pressure). Once the equation is

resolved and the pressure is determined, the velocity field is found from the geostrophic

relation. Quasi-geostrophic theory is relatively accurate for synoptic-scale atmospheric

motions in which the Rossby number is less than unity.

Motions observed in the ocean or atmosphere are never exactly in geostrophic balance.

The difference between the real flows and flows obtained from a quasi-geostrophic model is

called ageostrophic flow. It arises due to a multitude of effects including baroclinic, viscous
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and diffusive forces. These deviations will not be discussed in the work directly but it is

important to mention that flow dynamic within the RSW model can be ageostrophic.

1.1.4 Wave-current interaction

Two most prominent phenomena in the ocean and atmosphere are global currents and

ubiquitous wave disturbances. Different kinds of restoring mechanisms that exist in the

geophysical system create different types of waves. For example, latitudinal variation in

rotation, density stratification and compressibility allows, respectively, Rossby, internal-

gravity and sound waves to appear in the ocean and atmosphere.

In general, waves can interact with the mean motion in following ways:

1. mean fluid motion can influence propagation of incoming waves (wave scattering)

2. and even generate new waves (spontaneous emission of waves)

3. but in their turn waves can affect the mean flow (collective effect of waves)

In this thesis two linear scattering problems are examined and some new results related

to points 1 and 2 are obtained. The propagation of small-amplitude IGWs and Rossby

waves through dynamical barriers such as zonal jets is considered, respectively, within

the framework of the RGRSW and QG models for the rotating ocean. In addition, we

attempted to model the collective effect of stochastic wave fields (wave turbulence) but

some fundamental difficulties turned us away from pursuing this investigation.

Problems of wave-mean flow interaction arise in industrial as well as geophysical fluid

dynamics and some general results of this work might be extended to address them too.

Wave scattering by a variable medium

Mean motion has a profound effect on propagating waves. Even in the simple case of a

small-amplitude waves penetrating a shear flow, the relevant processes include not only

conservative scattering (reflection and transmission) but also dissipation and amplification

of waves.

This problem falls into the broad category of wave propagation in a slowly variable

medium. Within the framework of linear theory it can be described with help of the

classical D’Alembert wave equation (Vladimirov [86])

∂2U

∂t2
−∇ ·

(

c2 ∇U
)

= 0, (1.17)
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where U is a certain scalar function and the propagation speed of waves c can vary spatially.

This equation governs propagation of acoustic, electromagnetic, elastic, fluid waves and

even quantum particles and, hence, is well studied.

If we look for a one-dimensional harmonic wave solution U (x, t) = u (x) exp (iωt) then

Eq. (1.17) simplifies to
d

dx

(

c2 (x)
du

dx

)

+ ω2u = 0. (1.18)

If c(x) never turns zero then the transformation

X =

∫ x

x0

dx̆

c (x̆)
, ψ (X) =

√

c (x)u (x) , (1.19)

can be applied so that Eq. (1.18) becomes

d2ψ

dX2
+ ω2ψ = Q (X)ψ, (1.20)

where

Q =
1

2c

d2c

dX2
− 1

4c2

(

dc

dX

)2

.

The argumentation in this thesis will be largely guided by a well-known analogy be-

tween scattering of quantum particles and waves. Note that Eq. (1.20) is equivalent to the

time-independent 1D Schrödinger equation for a quantum particle (Landau and Lifshitz

[48])

E ψ = − ~
2

2m

d2ψ

dX2
+ V (X)ψ, (1.21)

when 2m
~2
E = ω2 and 2m

~2
V = Q; here m is the particle’s mass, ~ is the reduced Planck

constant, E is the total energy and V is the potential energy.

The equation has an important property worth being mentioned here. Schrödinger

equation in the form (1.21) is known to conserve the probability flux (or wave energy flux

in case of the wave scattering interpretation)

τ (x) = Im

(

dψ

dx
ψ∗
)

= const. (1.22)

where the asterisk denotes complex conjugate.

If function Q (potential V ) tends to 0 as X → ±∞ then Eqs. (1.20), (1.21) have
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oscillatory solutions there. Hence, supplemented with the boundary conditions

ψ → exp (iωX) + r exp (−iωX) at X → −∞
ψ → t exp (iωX) at X → +∞







(1.23)

the problem represents a free wave (particle) coming from −∞ and propagating through

a potential energy barrier. The incident wave (particle) gives rise to a transmitted and

reflected waves (particles) with amplitudes t and r (the probabilities for the particle to

pass the barrier or be reflected).

Figure 1.9: Wave scattering by a potential barrier.

Then, so-called unitarity condition can be obtained as a consequence. Substitution of

the boundary conditions at X → ±∞ (1.23) into Eq.(1.22) yields

|t|2 + |r|2 = 1. (1.24)

Hence, the probability to find the particle on either side of the barrier is 1. Or for the wave

problem the condition states conservation of wave energy, i.e. energy flux of the incident

wave is distributed between its transmitted and reflected counterparts.

Note that condition (1.24) is derived under assumption that potential is a smooth

real-valued function. If the potential is analytical but complex-valued or it has singu-

larities (typically, so-called critical layer singularities) then the joint energy flux of the

reflected and transmitted waves may differ from that of the incident one, which corre-

sponds to absorption or amplification of the incoming wave. The latter effect is usually

referred to as over-reflection (OR). Although, strictly speaking, the term over-reflection
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(over-transmission) implies that the amplitude of the reflected (transmitted) wave is (sep-

arately!) greater than that of the incident wave. Nevertheless, in this work we use the

term “over-reflection” as long as |t|2 + |r|2 > 1.

Emission of waves by currents

A number of sources starting from topography and finishing with thunderstorms can gen-

erate waves in the atmosphere and ocean. But many authors recognize emission of waves

by unstable currents and vortices as the main mechanism. In particular, according to

Shakina [79] unstable shear winds are the primal source of IGWs in the atmosphere. In

case of the oceans, observations of the spatial distribution of wave energy around intense

currents like the Gulf Stream also confirm this idea [12] (see Fig. 1.10).

Figure 1.10: Satellite image depicting the surface temperature around the east coast of
America (red = warm, blue = cold). The Gulf stream is believed to be the cause of intense
wave and eddy fields in the otherwise relatively quiescent regions south and north of the
current.

Nevertheless, the mechanism of wave generation is not obvious. According to obser-

vations, wave energy decays too slowly away from the jet’s core to be explained by the

classical instabilities, localized to the seat of shear flow. Arguably, the penetration of

waves into the far-field is the manifestation of so-called radiating instabilities. These are

also present within the linear stability analysis and essentially are “wavy” normal modes

with long decay scales. Many analytical and numerical studies estimated characteristics
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of disturbances generated by an unstable shear flow and were able to bring the results into

correlation with the observations (see Chapter 2).

A special case of radiating instabilities is so-called resonant over-reflection (or hyper-

reflection) (ROR). In the linear picture it describes an outgoing neutral disturbance being

spontaneously generated by the shear layer. Such solutions were discovered sporadically

in several problems (Lindzen [54], Maslowe [61] and Lott, Kelder & Teitelbaum [57]). The

phenomena is poorly studied and is hardly known to people working in the broad field

of scattering and instability problems. Originally, we also were surprised to discover that

this phenomena is present in our models but subsequently made it the central topic of the

study.

Finally, even thought the fastest growing modes dominate the evolution of unstable

flows, radiating instabilities and resonant over-reflection in particular are of great interest

as well. The modeling of wave radiation by ocean currents is important for complete

understanding of the mechanisms of energy transfer and generation of wave turbulence in

calm regions of the ocean (clear air turbulence in the atmosphere). They can also have an

important role in early development of unstable flows.

Effect of waves upon the mean flow

Although, persistent mean motions in the ocean and atmosphere described in §1.1.1 appear

to be largely stationary their position and intensity varies over a wide range of time scales.

Some of the changes can be directly related to the seasonal variation in distribution of solar

radiation. But some phenomena such as El Niño, North Atlantic Oscillation and Pacific

Decadal Oscillation occur with time scales of decades (climatic phenomena). The cause

of such variations is extremely hard to identify as the ocean-atmosphere system behaves

fairly chaotically due to its complexity and built-in instabilities. Several mechanisms have

been proposed to account for these existence of the oscillations. But most of them directly

acknowledge the influence of waves on the dynamics via contribution of momentum and

energy to the large-scale motions. Some assign waves only a role of a trigger mechanism.

For instance, the onset of an El Niño is often linked to an eastward propagating equatorial

Kelvin wave as the latter usually precede the start of an El Niño cycle (McPhaden and

Yu [64]).

It will be discussed that waves can interact with the flow and exchange momentum

and energy at the critical layers. Although, influence of a single small amplitude wave is

certainly negligible, a persistent ensemble of waves can have significant effect on the mean
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motion. Hence, the results of the scattering problem described in §1.1.4 can be used in

modeling the effect that a prescribed stochastic wave field has on the evolution of currents

and winds.

For example, Rossby waves in the ocean are recognized to intensify and alter the west-

ern boundary currents. Theoretically this has been discovered and studied by Killworth

and McIntyre [43], Benilov et al. [5], and references therein. Later Jacobs et. al. [38]

presented evidence that planetary-scale oceanic waves generated during the 1982-83 El

Niño caused northward re-routing of the Kuroshio Extension a decade later when they

have crossed the North Pacific.

Note that downward propagating IGWs also can transfer momentum into the depths

of the ocean without significant mixing (Muller [67], [68]). Based on this fact Lindzen

and Holton [53] were first to conjecture that the Quasi-Biennial Oscillation is a result of

zonal winds interacting with vertically propagating IGWs in the atmosphere. Overall,

while some theories remain speculative the influence of large-scale waves is universally

recognized.

1.2 Thesis outline

After the fundamental objects of the GFD prerequisite for the study are discussed and the

necessary terminology is introduced, the outline of the thesis can be clearly stated. We

examine linear scattering of IGWs by ageostrophic jets within the reduced gravity rotating

shallow water (RGRSW) model and Rossby-wave scattering by a two-jet configuration

on the QG β-plane. It is shown that infinitely strong amplification of waves (resonant

over-reflection) can occur. It is further demonstrated that, generally, a resonantly over-

reflected wave is always marginal to instability, i.e. either an increase or a decrease of its

wavenumber transforms it into a localized unstable mode.

The specific content of the chapters is as follows.

• Chapter 2: Literature Review. We set forth the previous work on over-reflection,

resonant over-reflection and their connection to instabilities in GFD.

• Chapter 3: Mathematical Models of Mesoscale Dynamics. We lay out

the general mathematical formulation of GFD problems and non-dimensionalize the

equations. With help of traditional approximations we obtain two sets of governing

equations used to model scattering of IGWs and Rossby waves respectively. These

are the RGRSW model on an f -plane and QG β-plane model.
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• Chapter 4: Gravity Wave Scattering by an Ageostrophic Jet on f-plane.

We examine scattering of small-amplitude IGWs by zonal surface currents within the

framework of the RGRSW model. Singularities of the governing equation were stud-

ied analytically. That gave insight into the mechanism of energy exchange between

the waves and mean flow and ensured reliable numerical simulations. Numerical

solutions allow to find the coefficients of reflection and transmission as functions

of wavenumber. Amplification and absorption of IGWs occurs in full agreement

with the theoretical predictions. We show that the mean flow can spontaneously

“emit” the reflected and transmitted waves without the incoming counterpart wave

present (resonant over-reflection) and give a physical explanation for the generation

mechanism.

• Chapter 5: Rossby Wave Scattering by a Geostrophic Jet on beta-plane.

In this chapter we put the hypothesized mechanism of resonant over-reflection under

test. For this sake we consider a toy problem of scattering of barotropic Rossby waves

by a two-jet configuration on the QG β-plane. We solve the problem numerically

and, as expected, find resonantly over-reflected waves. The corresponding scatter-

ing coefficients of each individual jet satisfy the condition implied by the proposed

generation mechanism.

• Chapter 6: Resonant over-reflection as a marginally stable disturbance.

We investigate the connection between the resonantly over-reflected waves and un-

stable normal modes both of which are solutions of the equations governing the

dynamics of small perturbations. We derive a general conclusion that resonant over-

reflection can be perceived as a borderline case of (radiating) instabilities. Hence,

we argue that when resonant over-reflection (and, hence, spontaneous emission of

waves) is present, the mean flow is unstable.

• Chapter 7: Conclusions. In this chapter we summarize the work of the present

thesis and discuss the results. Some possible improvements and directions for future

work are suggested.

1.3 Publications during the Ph.D. studies

The result of my research within the 3 years of Ph.D. studies is presented in 3 peer reviewed

research papers and several contributed talks. The work was carried out jointly with and
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Chapter 2

Literature Review

2.1 Wave over-reflection and instability

Linearized equations for a wave disturbance superimposed upon a plane-parallel flow U (y)

commonly appear in the linear stability and wave propagation problems. Various models

give rise to scattering equations of the type (1.20) but the coefficients look quite different.

However, the presence of a critical layer singularity at yc where the velocity of the mean

flow matches the corresponding component of the wave’s phase speed U (yc) = cph is their

common characteristic.

Phase speeds of IGWs in the ocean are typically about 1m/s (see §1.1.2) which is of

the same order as velocities of the fast surface currents like the Gulf Stream 1-2m/s (see

§1.1.1). Hence, it seems plausible that critical levels will occur fairly frequently when

random IGWs propagate through the jet. Observe, that similar situation occurs with

regards to Rossby waves (cph . 0.1m/s) and slower currents like the Antarctic circumpolar

current which speeds are . 0.5m/s.

Since the pioneering works by Lin [52] and Miles [66] critical layer singularities were

regularized by introducing infinitesimal viscosity. Mathematically this is equivalent to

fixing a branch of the multivalent solution. Although, this viscous regularization is not

unique and the solution can be made regular if, say, nonlinear effect are taken into account

(Killworth and McIntyre [43]). However, both regularization procedures lead to the same

magnitude of the jump in the wave energy flux (defined as in (1.22)) across critical layers.

Physically this suggests that a wave propagating across the mean flow can interact with

it in its critical layers resulting in either absorption or amplification of the wave energy by

the mean flow. The latter is traditionally referred to as over-reflection.

Historically scattering of waves by shear background flows containing a critical level

24
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was extensively studied within two following set-ups:

1. Propagation of IGWs through a steady plane-parallel flow with vertical shear U (z)

in an infinite layer of continuously stratified fluid, is typically studied using the

Boussinesq model. The corresponding scattering problem is governed by Taylor-

Goldstein equation. This model is not considered in this work but the corresponding

literature will be discussed as it is gives valuable insight. Exactly within this model

scattering of waves in presence of critical layers has been studied for the first time

by Booker & Bretherton [8].

They found the reflection and transmission properties of IGWs to be strongly depen-

dent on the value of Richardson number (Ri =
(

N
U ′

)2
) at the critical layers. Booker

& Bretherton [8] have shown that, for Richardson numbers greater than 1
4 , the wave

is absorbed by the flow. The case when Richardson number is smaller than 1
4 has

been later discussed by several authors, e.g. Jones [40], McKenzie [63], Eltayeb

& McKenzie [25], Acheson [1] and van Duin & Kelder [85]. They found that this

condition can yield over-reflection/over-transmission.

2. Scattering of barotropic Rossby waves by plane-parallel jets U (y) is traditionally

examined within the QG β-plane model. The governing equation is referred to as the

Rayleigh-Kuo equation [45] and is a simple generalization of the classical Rayleigh’s

equation arising in the problem of stability of an inviscid parallel shear flow [74].

Rossby-wave scattering by a specific two-jet configuration within this model will be

considered in Chapter 5.

Necessary and sufficient conditions for over-reflection and absorption were derived

by Lindzen and Tung [55] and later by Yamada and Okamura [89]. These authors

have shown that the scattering of Rossby waves depends on the sign of β−U ′′ at the

critical layers. In particular, when the condition β − U ′′ > 0 holds there the wave

energy is absorbed and, on the contrary, when β − U ′′ < 0 over-reflection occurs.

The time-dependent propagation of a Rossby-wave in a zonal jet was studied by

Dickinson [19] where the results were confirmed.

The two above-mentioned models received a lot of attention but are rather simplified.

IGW scattering within the model 1 does not take into account neither Earth’s rotation

nor horizontal structure of the flow while model 2 for barotropic Rossby waves completely

neglects stratification. Some authors endeavoured to examine wave scattering in more
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complex models. Propagation of IGWs in a stratified ocean with a shear flow in the

form U (y, z) has been addressed in theoretical studies [37], [4]. Jones [39] and Grimshaw

[29] included rotation into model 1. Nevertheless, all of those models rule out effects of

baroclinicity. As discussed in §1.1.3 the simplest model to include rotation, stratification

and baroclinicity effects is the reduced gravity rotating shallow water (RGRSW) model.

Scattering properties of zonal flows within this model will be examined in Chapter 4.

3. Up to the author’s knowledge the problem most similar to the one we study in

Chapter 4 was recently examined by Ollers et al. [69]. These authors studied

scattering of IGWs by a horizontal shear flow U (y) in uniformly stratified fluid on an

f -plane. Their scattering Eq. (10) is similar to our Eq. (4.21) except we acknowledge

variability of the layer’s depth H (y) (baroclinicity) and Ollers’ formulation has an

extra term due to constant stratification. Ollers et al. found that the sign of −U ′′

U ′

at the critical layer determines whether over-reflection or absorption occurs.

The mean flow was taken as a hyperbolic tangent profile with intention to represent

the Antarctic circumpolar current. The problem was solved numerically using a

straightforward method of introducing a small Rayleigh damping in order to regu-

larize the singularities in the scattering equation. In this thesis a superior method

is implemented but that one was used for too for testing purposes.

It is intuitively clear that, since over-reflection transfers energy from jets to waves,

it is conducive to the jet’s instability. This fact prompted researchers to investigate the

connection between the stability and scattering properties of the mean flow. Moreover, In

case of the aforementioned models 1 and 2, the necessary conditions for instability coincide

with the conditions for over-reflection.

• In case of the Taylor-Goldstein equation (model 1) Miles [66] and later Howard [35]

have shown that the flow is stable when the minimum Richardson number is every-

where greater than 1
4 . A necessary condition for instabilities requires the minimum

Richardson number to be less than 1
4 somewhere in the flow (Drazin [21]).

• For the Rayleigh-Kuo equation (model 2) the sufficient stability condition is β−Uyy >

0 everywhere in the flow (Kuo [45], Lin [52]). The condition β − Uyy < 0 must be

met somewhere in the flow for it to be potentially unstable.

• For the model 3, Ollers et al. [69] also tried to relate the results of the scattering

problem with the condition for a zonal shear flow on the f -plane to be inertially
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unstable: f (Uy − f) > 0 is fulfilled somewhere in the flow (see Holton [34]). They

found that when this condition is satisfied at the critical layer of the incident wave,

then over-reflection is favoured although absorption is possible too. The overall

situation is similar to that in the scattering problem examined in Chapter 4.

Hence, stable shear flows absorb waves while appearance of over-reflection favours

instabilities. Although, generally the correspondence is not clear especially when a precise

stability criterion is not present. We will show that, in general, the relation between over-

reflection and instability is more subtle than suggested by the two previous examples.

2.2 Radiating instabilities and emission of waves

Generally, the eigenfunctions of the instability problem may display the behavior at infinity

that is more “oscillatory” than exponentially decaying. Such unstable radiating modes

(unlike the conventional non-radiating normal modes which rapidly decay to 0 at infinities

and, hence, are trapped in space) are those that look “nearly” like free waves in the

far-field (their decay is slow). They represent waves being radiated away from the seat of

instability. For this to hold the real part of the phase speed of these modes must match the

phase speed of some freely propagating wave with the same horizontal wavelength. This

natural requirement constitute so-called phase speed condition (McIntyre and Weissman

[62]). Unstable normal modes spatially decay in the outer regions of instability. Hence,

the arising question of how to assess the extent to which instabilities penetrate into the

far-field regions has been debated in the literature [62], [84]. As the result, penetration

ratio (i.e. the ratio of the oscillation scale to the decay scale) is adopted as the gauge of

radiation effectiveness of an instability (see [84], [82], [41], [46]).

The concepts of radiating instabilities have been usually considered in the literature

within the 3 following models:

1. The case of IGW radiation by unstable shear flows in inviscid Boussinesq fluid

(Taylor-Goldstein equation) was investigated in [82], [46] (this model is not a subject

of the thesis so citation is limited).

2. Dickinson and Clare [20], Talley [84], Malanotte-Rizzoli [59] and Maslowe [61] exam-

ined radiating instabilities within the framework of QG β-plane model (Rayleigh-Kuo

equation). Unstable westward jets were found to radiate energy into the far-field [20].

In their turn, their eastward counterparts only support trapped instabilities and can-

not radiate (see [84], [59]). The difference is explained by the phase-speed condition:
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the instability’s phase speed must match a Rossby wave phase speed in the far-field

(which is always directed westwardly).

An analytical approach was uses by Talley in [84] where the velocity profile of the

background flow was approximated with piecewise quadratic functions. Fantini and

Tung [26], Kamenkovich and Pedlosky [41], Pedlosky [72] and Hristova et al. [36]

extended Talley’s work to address non-zonal jets as all real-life currents are not

always, and never exactly, zonal. Western and eastern boundary currents were ex-

amined within one- and two-layer QG β-plane models in [26], [72] and [36]. The

purely meridional velocity profiles were approximated with step-functions. More

general nonzonality in the mean flow was considered in [41]. The authors demon-

strated the destabilizing effect of the tilt on a zonal flow. The currents were found to

generate radiating modes propagating energy away into the far-field in all the cases.

3. Radiating instabilities (and over-reflection of IGWs) within RSW considered by Sato-

mura [77], Takehiro and Hayashi [83], Knessl and Keller [44] and Balmforth [3].

Numerical solutions of the linear stability problem are presented in these papers.

Although, rotational effects are usually not included in the models and other simpli-

fying assumptions (like linear velocity profile) are taken so the governing equations

are quite different from what we examine in Chapter 4.

Note that conventional stability analysis usually only look for non-radiating modes.

Notably, linear stability of a zonal jet on an f -plane with RGRSW model was investigated

by Paldor and Ghil [70] (the corresponding scattering problem is examined in Chapter 4).

Generation of waves propagating away from the shear zone was explicitly ruled out there

by the choice of boundary conditions.

In all the above-mentioned cases radiating instabilities were found to coexist with

trapped instabilities (also referred to as Kelvin-Helmholtz modes). Although, the growth

rates of the former generally remain much smaller than that for the most unstable non-

radiating mode their influence extends much further as they propagate energy far away

from the seat of instability.

Hence, radiating instabilities may be responsible (at least, partially) for observed emis-

sion of waves by fast (and in fact unstable) ocean currents and atmospheric winds (see

Schmitz et al. [78], Bower and Hogg [12], Romanova and Yakushkin [75] for the review

of observational data). So, they may be important for a more complete understanding of

phenomena of clear air turbulence in the atmosphere and wave turbulence in calm regions
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of the ocean away from major currents and other special regions.

Some recent numerical and experimental studies give strong evidence supporting this

idea. In their 3D simulations Viúdez & Dritschel [87] (see references therein for simpler

models) discovered that balanced but unstable jets in a rotating stratified fluid emits bursts

of IGWs which propagate far from the jet (where other instabilities would not “reach”).

Generation of IGWs by balanced flows was observed in laboratory experiments by Love-

grove, Read & Richards [58] and by Williams, Haine & Read [88] in a rotating two-layer

annulus experiment and in a single-layer experiment by Afanasyev et al. [2]. The exact

source of wave radiation is not established but the authors refer to baroclinic instability

as the candidate as all usual sources (physical obstructions, the geostrophic adjustment)

are filtered out.

One mechanism of how over-reflected gravity waves can cause instability is when the

transmitted wave is repeatedly reflected back towards the critical level by a rigid wall (the

ground/bottom in atmosphere/ocean) or a turning point beyond which the medium is not

transparent. This “over-reflection hypothesis” was suggested and developed by a number

of authors (Lalas and Einaudi [47], Davis and Peltier [17], [18] and Rosenthal and Lindzen

[76]). In a series of works Lindzen and coauthors successfully explained several types of

instabilities in geophysical flows with help of this mechanism (see a review paper [56]).

2.3 Resonant over-reflection

The prime goal of the present work is to investigate the phenomena of “resonant over-

reflection”. It describes the singular case of over-reflection where, according to linear

theory, the reflected and transmitted waves are infinitely strong – which can be interpreted

as spontaneous emission of outgoing “reflected” and “transmitted” waves by the flow in

the absence of the incident wave. We shall, also, refer to “resonant over-reflection” with a

more succinct term, “hyper-reflection”, which emphasises that this effect is stronger than

over-reflection – which is, in turn, stronger than the usual reflection. Also note, that the

phenomena, if present, can be thought of as the limiting case of the radiating modes as

the growth rate tends to 0.

Occasionally the term “resonant over-reflection” was used incorrectly to describe the

aforementioned “wave self-excitation” instabilities (e.g. papers by Davis [17], [18]). And

it should be emphasised that those two cases should not be confused. The growing modes

connected to Lindzen’s “over-reflection hypothesis” exist only in presence of a reflecting

boundary or a turning point.
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The phenomenon of resonant over-reflection was introduced in GFD by McKenzie in

1972 [63]. However, since then it was found in just a few cases (despite all the efforts the

author has only foundy another two) and and remained poorly studied.

1. McKenzie [63] and Lindzen [54] investigated stability of a Helmholtz velocity pro-

file (also referred to as vortex-sheet, see Fig. 2.1) in Boussinesq fluid with constant

Brunt–Väisälä frequency N . The shear flow was found to have neutral radiating

modes (resonantly over-reflected IGWs) propagating away from the current when-

ever the horizontal wavenumber is less than N√
2U

(where 2U is the mean velocity

discontinuity). McIntyre & Weissman [62] clarified the energy budget of wave-flow

interaction in this problem. Grimshaw [31], [32] examined its weakly nonlinear

extension. An equation governing the evolution of the amplitude of the interface

displacement was derived but still the solution was found to develop a singularity in

a finite time. Hence, Grimshaw confirmed the existence of resonant over-reflection

even within the weakly nonlinear theory.

z +U

-U

x

z +U

-U

x

Figure 2.1: A Helmholtz velocity and hyperbolic tangent profiles U (y) = U0 tanh (z/d) .

It is known (Jones [40], Eltayeb & McKenzie [25]) that discontinuities in the velocity

profile and its derivatives are known to give rise to extra reflected energy when a scattering

problem is considered. Hence, the assumption of Helmholtz velocity profile is crude and its

smooth analogue should be considered (Fig. 2.1). The corresponding scattering problem

where the basic flow is a hyperbolic tangent profile was examined numerically by Mied &

Dugan [65] and analytically by Grimshaw [30] and van Duin and Kelder [85]. Van Duin and

Kelder transformed the governing equation into Heun’s equation, obtained the solution in
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hypergeometric functions and, as a result, showed that resonant over-reflection is ruled

out. Hence, one may suppose that smooth velocity profiles inhibits this “nonphysical”

phenomenon.

2. However, Lott, Kelder & Teitelbaum in their analytical study [57] demonstrated that

resonant over-reflection can exist with smooth coefficients in the scattering equations.

The basic velocity was again U = U0 tanh (z/d) but stratification was non-uniform in

this case N2 = N2
1 +N2

2 |tanh (z/d)|α. The authors found that for α > 2 the mean

flow resonantly over-reflects IGWs of a particular wavenumber (rather than for a

range of wavenumbers as in [54]). Hence, this study indicates that if stratification is

small at the shear layer the mean flow can support spontaneous generation of IGWs.

3. Neutral radiating modes (resonantly over-reflected Rossby wave) were also found

within the QG β-plane model by Maslowe [61], provided the critical level is located

at the jet’s maximum c = Umax.

It can be checked that settings 2 and 3 are described by Sturm–Liouville-kind problems,

with coefficients involving second-order poles located at the critical level. Setting 1, in

turn, is a limiting case of setting 2 (with the width of the velocity “step” and the variation

of the Brunt–Väisälä frequency both tending to zero) – thus, it effectively involves a

second-order pole multiplied by a discontinuous coefficient.

In this thesis, we shall demonstrate numerically that resonant over-reflection can also

occur for IGWs within RGRSW (and RSW) on f -plane (Chapter 4) and Rossby waves

on the β-plane (Chapter 5), which both involve first-order poles. We shall also examine

hyper-reflection in a general formulation, concentrating on its connections with instability

(Chapter 6).

Notably, resonant over-reflection was not found by Ollers et al. in [69] even though

their scattering problem is similar to the one we study in Chapter 4 (and we observe

the phenomenon there). We attribute this to the fact that Ollers et al. did not carry out

numerical calculation of the scattering coefficients as functions of the zonal and meridional

wavenumbers (k and l−∞) but varied only one parameter β = k
l−∞

(referred to as the angle

of incidence) while l−∞ was fixed. Moreover, Figure (6) in [69] shows a sharp jump in

values of |R| and |T |. Hence, we hypothesize that corresponding point in the parameter

space may be close to the point
(

kr, lr−∞
)

at which resonant over-reflection occurs which

was missed out.



Chapter 3

Mathematical Models of

Mesoscale Dynamics

The ultimate goal of this chapter is to accurately rederive two classical models of geophys-

ical fluid dynamics (GFD): quasi-geostrophic (QG) β-plane model and reduced gravity

rotating shallow water (RGRSW) model on an f -plane. In what follows, the Euler’s equa-

tions of fluid dynamics are non-dimensionalized using some preconceived characteristic

scales for motions in the ocean and atmosphere introduced in §1.1. In order to simplify

the original equations governing fluid motion on the spinning Earth we use asymptotic

analysis with respect to the non-dimensional parameters and vertical averaging. Two

models under consideration represent two particular limiting cases. The corresponding

equations are much simpler but do retain the essential dynamical features. The clarity

of our derivations allows us to have better understanding of the limitations of the models

and the boundaries of their applicability.

The content of this chapter, obviously, is not new. Nevertheless, the presented general

way of obtaining the RGRSW (§3.4.4) and QG β-plane models (§3.5.2) was developed by

the author independently. The following sources were taken as the foundation: Pedlosky

[71], Holton [34], Gill [27] and lecture notes by Vladimir Zeitlin presented at the workshop

on the mathematics of weather and climate prediction, Met Office, Exeter, 2009.

3.1 Euler’s equations

The fundamental approach to mathematical modeling of ocean and atmosphere dynamics

resides in application of the hydrodynamic equations for inviscid, incompressible, stratified

32
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fluid (Euler’s equations) in a uniformly rotating coordinate frame. The closed system

consists of 5 equations for 5 unknowns: fluid velocity ~v (~r, t) ≡ (u (~r, t) , v (~r, t) , w (~r, t)),

pressure p (~r, t) and density ρ (~r, t)

D~v

Dt
+ 2

[

~Ω, ~v
]

+
[

~Ω,
[

~Ω, ~r
]]

= −1

ρ
∇p+ ~g, (3.1)

Dρ

Dt
= 0, (3.2)

∇ · ~v = 0, (3.3)

where ~g is the acceleration due to gravity, ~Ω is the planetary angular velocity and D
Dt =

∂
∂t + ~v · ∇ is the material time derivative. Essentially, the fluid dynamics is governed by

conservation of momentum (3.1), mass (3.2) and incompressibility condition (3.3).

On the left-hand side of Eq. (3.1) are present the Coriolis acceleration 2
[

~Ω, ~v
]

and

the centripetal acceleration
[

~Ω,
[

~Ω, ~r
]]

. They are due to altered perception of particle’s

acceleration in the rotating reference frame attached to Earth. With help of the formula for

triple vector product the formula for the centripetal acceleration simplifies to
[

~Ω,
[

~Ω, ~r
]]

=

−
∣

∣

∣

~Ω
∣

∣

∣

2
~r⊥ (~r⊥ is the component of ~r perpendicular to the rotation axis). Moreover, it

corresponds to a conservative force and can be combined with gravitational acceleration to

produce so-called effective gravitational acceleration ~ge = ~g+
∣

∣

∣

~Ω
∣

∣

∣

2
~r⊥. For most geophysical

phenomena the local variation in ~ge is unimportant (see Pedlosky [71], Holton [34]) as it

only result is slight deviation of geopotential surfaces (the potential surfaces of the effective

gravity) from perfect spheres. Then, we omit the index e and use the usual notation for

gravity ~g. In this work ~g is assumed to be constant and directed to the center of the earth.

Naturally, the Earth’s atmosphere or ocean can be represented by a thin layer of

stratified fluid on a rotating sphere of radius r0. We introduce a spherical coordinate

system as shown on Fig. 3.1. Then position of a fluid particle is given by the distance

from the Earth’s center r, latitude θ and longitude ϕ. Accordingly, w, u and v represent

velocities in the vertical, eastward, and northward directions. In these coordinates Euler’s



34

w

Ω

θ

r
L

D

v

⊗u

North pole

South pole

Equator

f

Figure 3.1: Spherical coordinates r, θ, ϕ on the Earth and characteristic horizontal and
vertical length scales L, D.

equations (3.1)− (3.3) transform into (see Pedlosky [71])

du

dt
+
uw

r
− uv

r
tan θ − (2Ω sin θ) v + (2Ω cos θ)w = − 1

ρr cos θ

∂p

∂φ
, (3.4)

dv

dt
+
wv

r
+
u2

r
tan θ + (2Ω sin θ) u = − 1

ρr

∂p

∂θ
, (3.5)

dw

dt
− u2 + v2

r
− (2Ω cos θ) u = −1

ρ

∂p

∂r
− g, (3.6)

dρ

dt
= 0, (3.7)

∂w

∂r
+

2w

r
+

1

r cos θ

∂ (v cos θ)

∂θ
+

1

r cos θ

∂u

∂φ
= 0, (3.8)

where
d

dt
=

∂

∂t
+

u

r cos θ

∂

∂φ
+
v

r

∂

∂θ
+ w

∂

∂r
. (3.9)

Dealing with Eqs. (3.4) − (3.9) directly is an extremely difficult task. This system of

nonlinear PDEs govern phenomena of all the spatial and time scales starting with tiny

eddies and ending with planetary scale Rossby waves. It is sufficient for our present

purposes to consider only large scale motions in mid-latitudes. The following scaling

analysis will allow us to considerably simplify Eqs. (3.4)− (3.9).
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3.2 Non-dimensionalization

We introduce characteristic horizontal and vertical scales of the motion L and D as shown

in Fig. 3.1. We will refer to θ0 as to the central latitude of the region (without loss

of generality the central longitude φ0 = 0). In addition, we assume that a single well-

defined horizontal velocity scale U exists so that magnitudes of time derivatives can also

be estimated with its help.

For convenience we introduce new coordinates

x = r0 cos θ0 φ, (3.10)

y = r0 (θ − θ0) , (3.11)

z = r − r0. (3.12)

On one hand they are just rescaled longitude, latitude and height. But on the other hand,

they measure eastward and northward distance from the central latitude θ0 and height

from a certain reference surface. They will play role of the Cartesian coordinates in the

upcoming tangent plane approximation.

Now we shall scale Eqs. (3.4) − (3.9) in order to estimate the order of magnitude of

the terms. The non-dimensional variables denoted by primes are introduced as below

x = Lx′, (3.13a)

z = δL z′, (3.13b)

v = U v′, (3.13c)

t =
L

U
t′, (3.13d)

w = δU w′, (3.13e)

where x = (x, y) and v = (v, u) denotes horizontal coordinates and velocities; two pa-

rameters δ and ∆ introduced in §1.1.3 represent the ratios of length scales

δ =
D

L
, ∆ =

L

r0
. (3.14)

The aptness of the chosen vertical velocity scale W = δU follows from incompressibility

condition (3.1).

We separate the pressure and density fields into the basic motionless state representing
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hydrostatic equilibrium given by p0 (z) and ρ0 (z) and fluctuations due to motion

p = p0 (z) + p̃ (x, y, z, t) , (3.15)

ρ = ρ0 (z) + ρ̃ (x, y, z, t) , (3.16)

∂

∂z
(p0 (z)) = −ρ0 (z) g. (3.17)

In order to proceed with non-dimensionalization we introduce the reference fluid’s density

at a certain point z0, say, at the ocean’s surface

̺0 = ρ0 (z0) (3.18)

and we scale the equilibrium density and pressure functions as

ρ0 = ̺0 ρ
′
0, p0 = ̺0gD p′0. (3.19)

The scaling of the pressure is based on the idea that horizontal pressure gradients are of

the same order as the Coriolis force. Hence,

p̃ = ̺0f0UL p̃
′, (3.20)

where as defined in (1.8) f0 is the Coriolis parameter at the central latitude θ0

f0 = 2Ω sin θ0. (3.21)

In addition, we expect the buoyancy force due to ρ̃ to be of the same order as vertical

gradients of pressure fluctuations

ρ̃g = O(p̃z) = O

(

̺0f0UL

D

)

. (3.22)

So the density and pressure fluctuations are non-dimensionalized as

ρ̃ = ̺0RoF ρ̃
′, p̃ = ̺0gDRoF p̃′, (3.23)

where we ushered parameter F and the Rossby number Ro was introduced in §1.1.3

Ro =
U

f0L
, F =

(

L

Rd

)2

. (3.24)
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The latter measures the ratio of the horizontal length L to the Rossby radius Rd and

hence, estimates the influence of gravity wave effects (similarly to how the Burger number

does it for IGWs, compare with (1.14) in §1.1.3). Substituting (3.17) − (3.24) into Eqs.

(3.4)− (3.9) we obtain the rescaled system (primes are omitted)

(ρ0 +RoF ρ̃)

(

Ro

(

du

dt
+
L

r∗
(δuw − uv tan θ∗)

)

− v
sin θ∗

sin θ0
+ δw

cos θ∗

sin θ0

)

=

= −r0
r∗

cos θ0
cos θ∗

∂p̃

∂x
, (3.25)

(ρ0 +RoF ρ̃)

(

Ro

(

dv

dt
+
L

r∗
(

δwv − u2 tan θ∗
)

)

+ u
sin θ∗

sin θ0

)

= −r0
r∗
∂p̃

∂y
, (3.26)

(ρ0 +RoF ρ̃)

(

Ro

(

δ2
dw

dt
− δL

r∗
(

u2 + v2
)

)

− δu
cos θ∗

sin θ0

)

= −∂p̃
∂z

− ρ̃, (3.27)

RoF
dρ̃

dt
+ w

∂ρ0
∂z

= 0, (3.28)

∂w

∂z
+
D

r∗
2w +

r0
r∗
∂v

∂y
− L

r∗
v tan θ∗ +

r0
r∗

cos θ0
cos θ∗

∂u

∂x
= 0, (3.29)

where
d

dt
=

∂

∂t
+
r0
r∗

cos θ0
cos θ∗

u
∂

∂x
+
r0
r∗
v
∂

∂y
+ w

∂

∂z
. (3.30)

To keep the equations succinct some original dimensional variables (denoted with asterisks)

are also present in Eqs. (3.25)− (3.29). But they always appear in combinations that can

be written in terms of non-dimensional variables. For instance,

r0
r∗

=
1

1 + δ∆ z
. (3.31)

Up to this point no approximations have been made as we have only rewritten the

equations with help of scaled variables. Depending on which of parameters δ, ∆, Ro and

F are small and their relative order different approximations can be obtained.

3.3 Tangent plane and hydrostatic approximations

We focus our attention on the dynamics of mesoscale systems (see 1.1.3) in a mid-latitude

region of the ocean or atmosphere distant from the equator and North Pole. This assures
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that the scales of the motion L and D satisfy condition (1.9) and, consequently,

δ ≪ 1 and ∆ ≪ 1, (3.32)

sin θ ∈ [ε; 1− ε] , (3.33)

where ε is a positive number less than 1.

Next we write down the leading order approximation to Eqs. (3.25) − (3.29) with

respect to small parameters δ and ∆. From condition δ ≪ 1 follows that only the normal

component of the Earth’s angular velocity Ωn = Ωsin θ is important. The component

of ~Ω proportional to cos θ create Coriolis forces in Eqs. (3.25) − (3.27) which are O (δ),

i.e. the horizontal Coriolis acceleration due to the vertical motion and the vertical Cori-

olis acceleration due to the horizontal motion are insignificant compared to the pressure

gradients.

In addition, condition δ ≪ 1 allows us to make use of the approximation of hydrostatic

equilibrium in Eq. (3.27) even though the fluid is in motion. Physically it means that

the pressure at any internal point is just due to the weight of overlying fluid. Note that

fluctuations in pressure due to vertical acceleration dw
dt in Eq. (3.27) are of order O

(

δ2
)

.

With help of the second small parameter ∆ we can neglect all the terms in (3.25)−(3.29)

which are due to working in spherical geometry. In other words, in the limit ∆ → 0 we can

replace the de facto spherical-shell region with its flattened analogue using (3.10)− (3.12)

as new Cartesian coordinates. This simplified domain can be visualised as the tangent

plane touching the sphere at the central latitude and longitude θ0, φ0 supplemented with

the z-axis perpendicular to this plane (Fig. 3.2).

y, v(x,y,z,t)

Ωn(y)

ρ=ρ(x,y,z,t)

g

L

D

z, w(x,y,z,t)

x, u(x,y,z,t)

West East

Bottom

Figure 3.2: Tangent plane approximation in mid-latitudes.

Making use of (3.11) , (3.13a) functions of latitude θ appearing in Eqs. (3.25)− (3.27)
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are expanded in Taylor series around the central latitude θ0. For example, for the non-

dimensional Coriolis parameter f = sin θ∗

sin θ0
we have

f = 1 +∆cot θ0 y −
∆2

2
y2 + · · · .

We denote the linear coefficient of variation in f (y) as β

β = cot θ0 ∆. (3.34)

It is the dimensionless analogue of β∗, the northward gradient of Coriolis parameter at

the latitude θ0, was introduced in (1.8)

β∗ =
f0
L
β =

2Ω

r0
cot θ0. (3.35)

The O (∆) variation of the Coriolis parameter with y may or may not be important. The

magnitude of this term should be compared with that of relative vorticity (acceleration

terms on the left-hand side of Eqs. (3.25)− (3.26)). The relative significance is measured

with the ratio β/Ro which is O (∆/Ro). Therefore, even though ∆ is small the effect of

change of the Coriolis parameter f can be important in approximations on scales where

Ro is small too. The latter leads to so-called β-plane approximation in which the linear

approximation for the Coriolis parameter is accepted

f (y) = 1 + β y. (3.36)

On the other hand, when Ro is of order 1 then the variation in f can be ignored

f (y) ≡ 1, (3.37)

and so-called f -plane approximation is obtained.

Therefore, under assumptions (3.32)− (3.33) the tangent plane setting shown on Fig.

3.2 can be taken as the simplified setting for the problem. Eqs. (3.25) − (3.29) are
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transformed into

Ro

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

+
1

ρ0 +RoF ρ̃

∂p̃

∂x
= fv, (3.38)

Ro

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

+
1

ρ0 +RoF ρ̃

∂p̃

∂y
= −fu, (3.39)

∂p̃

∂z
= −ρ̃, (3.40)

RoF

(

∂ρ̃

∂t
+ u

∂ρ̃

∂x
+ v

∂ρ̃

∂y
+w

∂ρ̃

∂z

)

+ w
∂ρ0
∂z

= 0, (3.41)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3.42)

Now that we have performed non-dimensionalization and provided the physical reasoning

for it, proved the asymptotic validity of plane and hydrostatic approximations, with help

of (3.19) and (3.23) we can recombine ρ0 and ρ̃, p0 and p̃ as

RoF
∂p

∂z
=

∂

∂z

(

p′0 +RoF p̃
)

= − (ρ0 +RoF ρ̃) = −ρ (3.43)

in order to rewrite Eqs. (3.38)− (3.43) in a more convenient form

Ro

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

+
1

ρ

∂p

∂x
= fv, (3.44)

Ro

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

+
1

ρ

∂p

∂y
= −fu, (3.45)

RoF
∂p

∂z
= −ρ, (3.46)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0, (3.47)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (3.48)

where the Coriolis parameter f is given either by (3.37) or (3.36).

From here, the derivation of the reduced gravity rotating shallow water (RGRSW) f -

plane model (relevant when Ro ∼ 1, β effect is negligible) and quasi-geostrophic (QG)

β-plane model (relevant when Ro is O (∆), β effect is important) will proceed differently.

The two following sections are devoted to this.

3.4 RGRSW model on an f-plane

In the following three subsections RGRSW equations will be introduced. In order to obtain

them we will replace the continuously stratified layer of fluid with two homogeneous layers
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via vertical averaging and supplement the result with shallow water theory and rigid lid

approximation.

RGRSW model will be used to simulate interaction of surface ocean currents with

IGWs which is one of the main objectives of this work. As discussed in §1.1.2, the ocean is

usually stably stratified. A realistic continuous function ρ0 (z) would be difficult to handle

mathematically but nontrivial stratification (ρ0 (z) 6= const) is necessary for IGWs to be

supported by the equations. So, we will content ourselves with a two-layer model that

treats the main pycnocline ρ0 (z) as a step function taking value ρ2 in the upper layer and

ρ1 in the lower one (ρ2 < ρ1). We also assume the layers be immiscible. Then the sharp

interface z1 (x, y, t) separating the bulk of the fluid into 2 homogeneous layers at all times

is introduced. The validity of this approximation is justified in the following subsection.

Note also that one can obtain more complex n-layer models when the stratification is

approximated with n > 2 homogeneous layers, however, they are not discussed in this

thesis.

Observations suggest that fluid below the main thermocline moves much slower than

that above it. Also, if the lower layer is sufficiently deep we can postulate that fluid is

stagnant closer to the bottom. Hence, we will associate the thin upper layer with the

surface current and the underlying one with heavier fluid at rest. We will refer to such

a model which has one active layer only as reduced gravity model (or 11/2-layer model).

Generally, the assumption of motionless bottom layer transforms an (n+1)-layer model

into n1/2-layer (Fig. 3.3).

The setting as it is simplified so far includes two free surfaces z1 (x, y, t) and z2 (x, y, t).

Hence, in addition to slowly oscillating IGWs the model inevitability supports the usual

surface waves on z2 (x, y, t) (Fig. 3.4). An effective way to get rid of these unnecessary

waves is an assumption known as the “rigid lid” approximation. Within it the free surface

z2 (x, y, t) is replaced with a flat lid-like surface z2 = const and its validity is justified in

the third of the following subsections. There we show that rigid lid approximation does

not change horizontal pressure gradients in all the layers. Moreover, we prove that both

the free surface and the rigid lid are dynamically similar for IGWs. The latter is true due

to the fact that surface and internal gravity waves virtually do not “feel” nor “affect” each

other. Therefore, the original problem will be reduced to one with a flat upper boundary

and a free internal boundary z = z1 (x, y, t).
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Figure 3.3: Comparison of basic layered models.

3.4.1 Vertical averaging and layered models

We expect motion in the thin layer of fluid δ = D
L ≪ 1 to be nearly horizontal with

small variations of kinematic and dynamic characteristics in z-direction. Hence, a useful

approximation can be obtained by smearing Eqs. (3.44)−(3.48) along the z-direction over

the regions separated by appropriate interfaces z = zi (x, y, t) , i = 0, 1, 2 (see Fig. 3.5).

The general approach of vertical averaging can be used to obtain the n-layer approximation

but for our purposes n = 2 is sufficient.

It is not obvious at once whether the models that convert continuous function ρ0 (z) into

a piecewise constant one preserve important dynamical features. We take Eqs. (3.44) −
(3.45), (3.47)− (3.48) as a starting point but rewrite them in a modified form

Ro

(

∂ (ρu)

∂t
+
∂
(

ρu2
)

∂x
+
∂ (ρuv)

∂y
+
∂ (ρuw)

∂z

)

+
∂p

∂x
= ρv, (3.49a)

Ro

(

∂ (ρv)

∂t
+
∂ (ρuv)

∂x
+
∂
(

ρv2
)

∂y
+
∂ (ρvw)

∂z

)

+
∂p

∂y
= −ρu, (3.49b)

∂ρ

∂t
+
∂ (ρu)

∂x
+
∂ (ρv)

∂y
+
∂ (ρw)

∂z
= 0. (3.49c)

The hydrostatics equation (3.46) allows to calculate pressure in an arbitrary internal point
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Figure 3.4: Surface current as a thin homogeneous active layer and a deep lower layer of
heavier fluid at rest.

of a layer in terms of its position and pressure at the middle interface

p (x, y, z, t) = − 1

RoF

∫ z

z1

ρ
(

x, y, z′, t
)

dz′ + p|z1 . (3.50)

Here Eqs. (3.49a) − (3.49c) integrated between two material surfaces, say z1 (x, y, t)

and z2 (x, y, t), yield

Ro

(

∂

∂t

∫ z2

z1

ρudz +
∂

∂x

∫ z2

z1

ρu2dz +
∂

∂y

∫ z2

z1

ρuvdz

)

−
∫ z2

z1

ρvdz =

= − ∂

∂x

∫ z2

z1

pdz − p|z1
∂z1
∂x

+ p|z2
∂z2
∂x

, (3.51)

Ro

(

∂

∂t

∫ z2

z1

ρvdz +
∂

∂x

∫ z2

z1

ρuvdz +
∂

∂y

∫ z2

z1

ρv2dz

)

+

∫ z2

z1

ρudz =

= − ∂

∂y

∫ z2

z1

pdz − p|z1
∂z1
∂y

+ p|z2
∂z2
∂y

, (3.52)

∂

∂t

∫ z2

z1

ρdz +
∂

∂x

∫ z2

z1

ρudz +
∂

∂y

∫ z2

z1

ρvdz = 0. (3.53)
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Figure 3.5: Averaging governing equations over two layers separated by arbitrary interface
z = z1 (x, y, t) with bottom topography z = z0 (x, y, t) and free surface z = z2 (x, y, t) .

Eqs. (3.51)− (3.53) were obtain with use of Leibnitz formula for a function ξ (z):

∫ z2

z1

∂ξ

∂x
dz =

∂

∂x

∫ z2

z1

ξdz − ξ|z2
∂z2
∂x

+ ξ|z1
∂z1
∂x

, (3.54)

and kinematic boundary conditions on the interfaces:

w|zi =
∂zi
∂t

+ u
∂zi
∂x

+ v
∂zi
∂y

, i = 1, 2. (3.55)

Averaging in the layer bounded by z0 (x, y, t) and z1 (x, y, t) can be performed similarly.

For convenience we introduce additional notation for the layer thickness, integrated

and mean density:

hi = zi − zi−1, µi =

∫ zi

zi−1

ρdz, ρ̄i =
µi
h2
. (3.56)
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We define the vertical average of a quantity as

〈·〉i =
1

µi

∫ zi

zi−1

(ρ ·) dz. (3.57)

With help of (3.56) − (3.57) Eqs. (3.51) − (3.53) transform into following equations for

averages

Ro

(

∂ (µ2 〈u〉2)
∂t

+
∂
(

µ2
〈

u2
〉

2

)

∂x
+
∂ (µ2 〈uv〉2)

∂y

)

− µ2 〈v〉2 =

= − ∂

∂x

∫ z2

z1

pdz − p|z1
∂z1
∂x

+ p|z2
∂z2
∂x

, (3.58)

Ro

(

∂ (µ2 〈v〉2)
∂t

+
∂ (µ2 〈uv〉2)

∂x
+
∂
(

µ2
〈

v2
〉

2

)

∂y

)

+ µ2 〈u〉2 =

= − ∂

∂y

∫ z2

z1

pdz − p|z1
∂z1
∂y

+ p|z2
∂z2
∂y

, (3.59)

∂µ2
∂t

+
∂ (µ2 〈u〉2)

∂x
+
∂ (µ2 〈v〉2)

∂y
= 0. (3.60)

To obtain a closed system of equations for the averages we introduce additional hy-

potheses. The first one is the widely used in the mean-field hydrodynamics hypothesis

about decoupling of the averages

〈

u2
〉

i
≈ 〈u〉i 〈u〉i , 〈uv〉i ≈ 〈u〉i 〈v〉i ,

〈

v2
〉

i
≈ 〈v〉i 〈v〉i . (3.61)

The second assumption proposes that mean density ρ̄i (x, y, t) is nearly constant in each

layer

ρ̄i (x, y, t) ≈ const. (3.62)

The latter allows to rewrite the hydrostatics approximation (3.50) as (valid in layer 2)

p (x, y, z, t) ≈ − ρ̄2
RoF

(z − z1) + p|z1 . (3.63)

Substituting (3.61) and (3.63) into Eqs. (3.58)−(3.60) we obtain (the brackets of averaging
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are omitted)

ρ̄2h2

(

Ro

(

∂u2
∂t

+ u2
∂u2
∂x

+ v2
∂u2
∂y

)

− v2

)

=

= − ∂

∂x

(

− ρ̄2
RoF

h22
2

+ p|z1 h2
)

− p|z1
∂z1
∂x

+ p|z2
∂z2
∂x

, (3.64)

ρ̄2h2

(

Ro

(

∂v2
∂t

+ u2
∂v2
∂x

+ v2
∂v2
∂y

)

+ u2

)

=

= − ∂

∂y

(

− ρ̄2
RoF

h22
2

+ p|z1 h2
)

− p|z1
∂z1
∂y

+ p|z2
∂z2
∂y

, (3.65)

∂h2
∂t

+
∂ (h2u2)

∂x
+
∂ (h2v2)

∂y
= 0. (3.66)

The latter then simplifies to

Ro

(

∂u2
∂t

+ u2
∂u2
∂x

+ v
∂u2
∂y

)

− v2 = − 1

ρ̄2

∂π2
∂x

, (3.67)

Ro

(

∂v2
∂t

+ u2
∂v2
∂x

+ v2
∂v2
∂y

)

+ u2 = − 1

ρ̄2

∂π2
∂y

, (3.68)

∂h2
∂t

+
∂ (h2u2)

∂x
+
∂ (h2v2)

∂y
= 0, (3.69)

where

π2 = p|z1 +
ρ̄2
RoF

z1. (3.70)

Note that if pressure on upper(lower) interface is known from boundary conditions the

hydrostatics allows to calculate pressure on lower(upper) surface

p|z1 = p|z2 +
ρ̄2
RoF

(z2 − z1) , (3.71)

and hence,

π2 = p|z1 +
ρ̄2
RoF

z1 = p|z2 +
ρ̄2
RoF

z2. (3.72)

Similar equations can be derived for the lower layer bounded by z0 (x, y, t) and z1 (x, y, t).

In the next section the systems of equations (3.67)−(3.69) for both layers will be combined

together to form the two-layer RSW equations. Classical rotating shallow water (RSW)

equations for homogeneous fluid are obtained as its special case.
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3.4.2 One- and two-layer RSW approximations

z (x,y,t)1

y, v(x,y,t)

g
z

x, u(x,y,t)

Bottom

f

z (x,y,t)0

h(x,y,t)

Figure 3.6: Single layer rotating shallow water model.

First, we write down RSW equations for 1 homogeneous layer with bottom topography

presented on Fig. 3.6. The equations are obtained from Eqs. (3.67) − (3.69) using the

condition at the free surface p|z1 = pa (pa stands for atmospheric pressure) and h (x, y, t) =

z1 (x, y, t)− z0 (x, y) as layer’s thickness (unnecessary layer numbering is omitted)

Ro

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)

− v +
1

RoF

∂ (h+ z0)

∂x
= 0, (3.73)

Ro

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)

+ u+
1

RoF

∂ (h+ z0)

∂y
= 0, (3.74)

∂h

∂t
+
∂ (hu)

∂x
+
∂ (hv)

∂y
= 0, (3.75)

where the scale for density in (3.18) is now chosen so that ρ̄ = 1. The system of 3

equations (3.73)− (3.75) must be resolved with respect to 3 unknowns u (x, y, t) , v (x, y, t)

and h (x, y, t).

Two-layer RSW model (with flat bottom z0 (x, y) = 0) governs dynamics of the setting

shown on Fig. 3.7. The equations are obtained when Eqs. (3.67)− (3.69) for both layers
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Figure 3.7: Two-layer rotating shallow water.

are written down simultaneously

Ro

(

∂ui
∂t

+ ui
∂ui
∂x

+ vi
∂ui
∂y

)

− vi +
1

ρ̄i

∂πi
∂x

= 0, (3.76)

Ro

(

∂vi
∂t

+ ui
∂vi
∂x

+ vi
∂vi
∂y

)

+ ui +
1

ρ̄i

∂πi
∂y

= 0, (3.77)

∂hi
∂t

+
∂ (hiui)

∂x
+
∂ (hivi)

∂y
= 0, (3.78)

where index i = 1, 2 tags the layer (the lower and upper respectively) to which quantities

correspond to. To close the system of Eqs. (3.76) − (3.78) we will utilize dynamical

conditions at the free surfaces z1 (x, y, t) and z2 (x, y, t).

Making use of comment (3.72) we write down expressions for πi as

πi = p|z1 +
ρ̄i

RoF
h1. (3.79)

Then the condition of continuity of pressure on the interface z1 (x, y, t) yields

π2 = π1 +
ρ̄2 − ρ̄1
RoF

h1. (3.80)
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With help of Eq. (3.72) the free boundary condition at z2 (x, y, t) can be written down as

π2 = pa +
ρ̄2
RoF

(h1 + h2) . (3.81)

Combining Eqs. (3.76)− (3.78) with (3.80)− (3.81) we obtain two-layer RSW equations.

In the next subsection we will discuss how the free surface condition (3.81) can be replaced

with so-called rigid lid condition. As the result, the two-layer RSW model simplifies to

the RGRSW model (sometimes also referred to as 11/2-layer model). We will see that the

latter is mathematically identical to single-layer RSW model (3.73)− (3.75).

3.4.3 Rigid lid approximation

In this appendix we give grounds for the widely applied rigid lid approximation which

replace the actual free ocean surface z = µ (x, y, t) with a flat surface z = const. We show

that it is valid when the bottom layer is sufficiently thick to absorb small fluctuations

propagating from the upper layers. This result can be obtained for an arbitrary number

of layers but as we restrict ourselves to the simple case of the two-layer model.

p0 ≠ const

h1

z

x

Bottom

h2

z

x

Bottom

μ(x,y,t)

p0 =p consta=

00
Rigid lid

ρ2

ρ1

ρ2

ρ1

p2

p1

p2

p1

h1

h2

Figure 3.8: Multi-layer model with rigid lid and free surface.
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Horizontal pressure gradients. Here we discuss how horizontal pressure gradients in

layers differ between the two above-mentioned settings presented on Fig. 3.8. First of all,

we consider the case of rigid lid approximation. Using assumption of hydrostatics (3.46)

we obtain formulae for pressure in the layers:

p2 = p0 − ρ̄2gz, (3.82)

p1 = p0 + ρ̄2gh2 − ρ̄1g (z + h2) . (3.83)

Note that to make physics more clear we have temporary returned to dimensional variables.

Expressions (3.82) − (3.83) include pressure at the lid p0 which is unknown. But with

assumption of the bottom layer being very thick and motionless (∇̄p1 = 0) this unknown

can be eliminated

∇̄p0 = (ρ̄1 − ρ̄2) g ∇̄h2, (3.84)

where ∇̄ denotes the horizontal gradient operator. The latter formula is the same for the

horizontal pressure gradients in the active layer ∇̄p2. With help of the reduced gravity

coefficient g∗r =
ρ̄1−ρ̄2
ρ̄2

g introduced in (1.1) we rewrite the latter formulae as

1

ρ̄2
∇̄p2 = g∗r ∇̄h2. (3.85)

Next, we carry out the same calculations for a model with free upper material sur-

face. As we integrate the hydrostatic equation downwards starting from the surface

z = µ (x, y, t) we obtain

p2 = pa − ρ̄2g (z − µ) , (3.86)

p1 = pa + ρ̄2g (h2 + µ)− ρ̄1g (z + h2) , (3.87)

where pa is the atmospheric pressure (hence, ∇̄pa = 0). As above, the unknown free

surface elevation µ (x, y, t) can be eliminated if the bottom layer is stagnant. As the result

we find

∇̄p2 = (ρ̄1 − ρ̄2) g ∇̄h2, (3.88)

which is exactly the same expression as in (3.84). Therefore, within rigid-lid approxima-

tion, dynamically important horizontal pressure gradients are identical to those in free

surface model when lower layer is motionless.
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Separation of surface and internal gravity waves. For a deep and motionless bot-

tom layer Eqs. (3.76)− (3.77) become

∂π1
∂x

= 0,
∂π1
∂y

= 0. (3.89)

Hence, with help of condition (3.80) RSW Eqs. (3.76)− (3.78) for the top layer transform

into

Ro

(

∂u2
∂t

+ u2
∂u2
∂x

+ v2
∂u2
∂y

)

− v2 −
g′r

RoF

∂z1
∂x

= 0, (3.90)

Ro

(

∂v2
∂t

+ u2
∂v2
∂x

+ v2
∂v2
∂y

)

+ u2 −
g′r

RoF

∂z1
∂y

= 0, (3.91)

∂ (z2 − z1)

∂t
+
∂ ((z2 − z1)u2)

∂x
+
∂ ((z2 − z1) v2)

∂y
= 0, (3.92)

where g′r =
ρ̄1−ρ̄2
ρ̄2

is the non-dimensional reduced gravity.

Note that we could choose the following scales for L, U and D

L = Ri
d =

√

g∗rH
∗
0

f∗0
, U =

√

g∗rH
∗
0 , D = H∗

0 . (3.93)

where Ri
d is the internal Rossby deformation radius introduced in (1.16) and H∗

0 is the

mean depth of the surface layer (asterisks indicate dimensional parameters). This choice

entails that

Ro = 1,
g′r
F

= 1, (3.94)

as defined in §3.2 and, hence, Eqs. (3.90) − (3.92) become (index ′2′ in u2 and v2 is

omitted)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− v =

∂z1
∂x

, (3.95)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ u =

∂z1
∂y

, (3.96)

∂ (z2 − z1)

∂t
+
∂ ((z2 − z1)u)

∂x
+
∂ ((z2 − z1) v)

∂y
= 0, (3.97)

The two free surfaces can support both surface and internal gravity waves. With use

of Eqs. (3.95) − (3.97) we will investigate whether usual surface waves (which are ruled

out by rigid-lid approximation) can influence internal gravity waves. We consider small
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perturbations superposed on the motionless basic state

z1 (x, y, t) = −1 + µ (x, y, t) , (3.98)

z2 (x, y, t) = η (x, y, t) , (3.99)

where η (x, y, t) and µ (x, y, t) are small free surface elevations of the upper and lower

interfaces. Eqs. (3.90)− (3.92) are linearized around the equilibrium

∂u

∂t
− ∂µ

∂x
= v, (3.100a)

∂v

∂t
− ∂µ

∂y
= −u, (3.100b)

∂η

∂t
− ∂µ

∂t
+

(

∂u

∂x
+
∂v

∂y

)

= 0. (3.100c)

Cross-differentiation of first two yields

(

∂u

∂y
− ∂v

∂x

)

t

=

(

∂u

∂x
+
∂v

∂y

)

, (3.101)

and divergence of these equations gives

∂

∂t

(

∂u

∂x
+
∂v

∂y

)

−
(

∂2µ

∂x2
+
∂2µ

∂y2

)

= − (uy − vx) . (3.102)

Combining equations (3.100c)− (3.102) we derive

∂

∂t

(

∂2

∂t2
+ 1

)

(µ− η)− ∂

∂t

(

∇2µ
)

= 0. (3.103)

We need to supplement (3.103) with another equation for µ and η. Eqs. (3.90)−(3.92)

were obtained with help of pressure continuity (3.80) and assumption of a deep motionless

bottom layer. Obviously, similar equations can be written for the air-water interface with

help of condition (3.80) and the air above z2 (x, y, t) playing the same role as the bottom

motionless layer. Hence, we obtain

g′r
∂

∂t

(

∂2

∂t2
+ 1

)

(µ− η) +
∂

∂t

(

∇2η
)

= 0. (3.104)

Density differences in the ocean rarely exceed 0.1%. Thus, the equality g′r = ρ1−ρ2
ρ2

≪ 1
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allow us to simplify (3.103)− (3.104) to

∂

∂t

(

∂2

∂t2
+ 1

)

h− ∂

∂t

(

∇2h
)

= 0, (3.105)

where h (x, y, t) = 1+η (x, y, t)−µ (x, y, t) is the total depth of the active layer. Latter we

will see that Eq. (3.105) is identical to Eq. (4.8) governing free IGWs in RGRSW model

derived under rigid lid approximation.

Physically this fact can be interpreted as separation of two types of waves. For instance,

if we look for small amplitude plane wave solutions

η, µ = exp (i (ωη,µt− kη,µx− lη,µy)) , (3.106)

of Eqs. (3.103)− (3.104) we can find that dispersion relations for surface waves ω2
η (kη, lη)

and for IGWs ω2
µ (kµ, lµ) satisfy

ω2
µ

ω2
η

≈ ρ1 − ρ2
ρ2

≪ 1. (3.107)

So, frequencies and phase speeds of surface waves are much higher than those of IGWs.

The two types of waves do not “feel” each other and can be separated.

3.4.4 RGRSW and one-layer RSW equations

Now we can finally derive the reduced gravity rotating shallow water (RGRSW) equations

governing dynamics of the ocean consisting of a thin active upper layer and a deep lower

layer on an f -plane. Since validity of the rigid lid approximation is established we can

replace the two-layer setting shown on Fig. 3.5 with the one on Fig. 3.9.

As in (3.93) we use the following horizontal, vertical and velocity scales:

L = Ri
d =

√

g∗rH
∗
0

f∗0
, D = H∗

0 , U = C0 =
√

g∗rH
∗
0 . (3.108)

Here H∗
0 is the mean depth of the upper layer. Internal Rossby deformation radius Ri

d

represents the scale at which rotational and buoyancy effects are of equal importance. As

we will observe later, constant C0 is typical phase speed of IGWs in absence of rotation.

As discussed in §1.1.1 − 1.1.3 typical values of Rd and C0 calculated according to

(3.108) with H∗
0 ∼ 500m, g∗r ∼ 0.01m/s2 and f∗0 ∼ 10−4 1/s (corresponding central latitude
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z (x,y,t)1

y, v(x,y,t)

z

x, u(x,y,t)

f

h(x,y,t)

g′

z (x,y)2 =0
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ρ2
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Heavy fluid

at rest
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active layer

Figure 3.9: 11/2-layer (reduced gravity) model with rigid lid approximation.

θ0 ∼ 45◦) are

Ri
d ∼ 20 km, U ∼ 2m/s. (3.109)

These are in agreement with the observed widths, depths and speeds of the surface cur-

rents, such as the Gulf Stream and Kuroshio. Hence, characteristic scales (3.108) and

resulting Eqs. (3.110)− (3.112) are suitable to study interaction of IGWs and large-scale

surface ocean currents.

With use of the condition z2 (x, y, t) = 0, Eqs. (3.95) − (3.97) yield the RGRSW

equations

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+
∂h

∂x
= v, (3.110)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+
∂h

∂y
= −u, (3.111)

∂h

∂t
+
∂ (hu)

∂x
+
∂ (hv)

∂y
= 0, (3.112)

where h (x, y, t) is the thickness of the upper layer. Equations for the bottom layer are

trivial due to its motionless.

Note that the setting Fig. 3.9 is identical to the one representing 1 homogeneous layer

with flat bottom. The analogy is visualized when we mentally turn Fig. 3.9 upside down.

Moreover, classical RSW equations (3.73) − (3.75) for 1 homogeneous layer with the flat

bottom z0 (x, y) = const are identical to the RGRSW equations (3.110) − (3.112). The

only difference is in the scaling. Eqs. (3.73) − (3.75) simplify to Eqs. (3.110) − (3.112)
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when usual gravity g replaces the reduced gravity gr in (3.108)

L = Rd =

√

g∗H∗
0

f∗0
, D = H∗

0 , U = c0 =
√

g∗H∗
0 , (3.113a)

where Rossby deformation radius Rd represents the scale at which rotational effects are

strong enough to compete with the full gravity g∗ and constant c0 is characteristic phase

speed of gravity waves in absence of rotation. Hence, within this scaling Eqs. (3.110) −
(3.112) can be used to model usual surface waves.

Tabs. 1.1 and 1.2 show that Rd is too large to be a suitable length scale for problems

including modeling of the narrow surface currents, such as the Gulf Stream and Kuroshio.

However, it might be useful for problems involving slow and wide surface currents, such

as the Antarctic Circumpolar Current. Moreover, scaling (3.113a) might be appropriate

in hydrodynamic problems coming from industry. One can imagine a setting where a thin

layer of fluid with a free upper boundary exist on a rotating plane. Our results can be

directly extended to such problems as the governing equations (3.110) − (3.112) remain

exactly the same.

3.5 QG Approximation on a β-plane

In this section the quasi-geostrophic (QG) approximation will be introduced as an asymp-

totic simplification of the tangent β-plane model obtained in §3.3 when Ro≪ 1. Later it

will be used to study interaction of ocean currents with large-scale Rossby waves.

As has been noted variations of the Coriolis parameter f with latitude can be important

in approximations on scales when Ro = O(∆) ≪ 1. The definition of Rossby number

(3.24) implies that we focus on motions whose time scales L/U are long compared to

the time of Earth’s revolution 1/f0. While non-constant density was necessary for IGWs

to exist, Rossby waves are supported by the variability of the Coriolis parameter f =

1 + β y. For simplicity stratification effects are neglected, so the non-dimensional density

is constant: ρ ≡ 1. Such assumption rules out any influence of baroclinicity and only

allows for barotropic Rossby wave in the model.

We continue the derivations from where we left them as Eqs. (3.44) − (3.48). We

assume that the free surface of the ocean in motion η (x, y, t) is a perturbation the static

surface is η ≡ 0. The bottom is assumed to be flat: z0 (x, y, t) = −1. Then the hydrostatics

equation (3.46) yields

p =
1

RoF
(η − z) + pa. (3.114)
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Consequently, Eqs. (3.44)− (3.45), (3.47)− (3.48) can be written as

Ro

(

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z

)

+
1

RoF

∂η

∂x
= (1 + βy) v, (3.115)

Ro

(

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z

)

+
1

RoF

∂η

∂y
= − (1 + βy)u, (3.116)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (3.117)

where we used the beta approximation (3.36) for the Coriolis parameter f .

Forcing terms in (3.115) − (3.116) do not depend on z coordinate. This allows us to

look for solution in the form

u = u (x, y, t) , v = v (x, y, t) . (3.118)

Kinematic conditions at the free boundary and bottom are

w =
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
at z = η (x, y, t) , (3.119a)

w = 0 at z = −1. (3.119b)

Hence, Eq. (3.117) can be replaced with its integrated with respect to z version

∂η

∂t
+
∂ (uη)

∂x
+
∂ (vη)

∂y
+

(

∂u

∂x
+
∂v

∂y

)

= 0. (3.120a)

Observe that essentially Eqs. (3.115)−(3.116), (3.120a) are RSW equations (3.73)−(3.75)

for a layer of thickness h (x, y, t) = 1 + η (x, y, t) with flat bottom and f = 1 + β y as the

Coriolis parameter.

3.5.1 Geostrophic Approximation

We look for solutions of Eqs. (3.115) − (3.116), (3.120a) in asymptotic series in Ro and

expand the unknowns u, v in the form

ξ = ξ0 +Ro ξ1 +Ro2 ξ2 . . . , (3.121)

and η as

η = Ro
(

η0 +Roη1 +Ro2 η2 . . .
)

. (3.122)

Note that η ∼ Ro is necessary for Eq. (3.115)−(3.116) to be consistent. This assumption of
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the small elevation of the free surface is essential for the quasi-geostrophic approximation.

Note that the more general RSW model does not require the variation of active-layer depth

to be small unlike the QG model (remark that actually the current derivations take RSW

equations as a starting point).

The leading order approximation to Eq. (3.115)− (3.116) is

1

F

∂η0
∂x

= v0, (3.123)

1

F

∂η0
∂y

= −u0. (3.124)

Recalling relationship (3.114) between surface elevation η and pressure p, Eqs. (3.123)−
(3.124) should be recognized as the geostrophic relation in which the Coriolis force and

pressure gradient balance each other. Hence, in this 0-order approximation fluid runs

parallel to surface elevation contours (see Fig. 1.8).

Eqs. (3.123) − (3.124) imply that the geostrophic velocities u0, v0 are non-divergent

and Eq. (3.120a) is automatically satisfied at this order

∂u0
∂x

+
∂v0
∂y

= 0. (3.125)

Therefore, the O (1) motion can be characterised by the stream function ψ (x, y, t)

ψ =
η0
F
, u0 = −∂ψ

∂y
, v0 =

∂ψ

∂x
. (3.126)

Note that Eqs. (3.123) − (3.124) are not sufficient to determine the solution u0, v0,

η0 but rather give the necessary condition that the leading order motion is in geostrophic

balance. To close the system we need to consider the next order approximation.

3.5.2 QG vorticity Equation

The O (Ro) terms in Eqs. (3.115)− (3.117) yield

∂u0
∂t

+ u0
∂u0
∂x

+ v0
∂u0
∂y

+
1

F

∂η1
∂x

= v1 + β′y v0, (3.127)

∂v0
∂t

+ u0
∂v0
∂x

+ v0
∂v0
∂y

+
1

F

∂η1
∂y

= −u1 − β′y u0, (3.128)

∂η0
∂t

+ u0
∂η0
∂x

+ v0
∂η0
∂y

+

(

∂u1
∂x

+
∂v1
∂y

)

= 0. (3.129)
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where β′ = β/Ro = (∆/Ro) cot θ0 is an O (1) parameter. The velocities u1 and v1 are

first order ageostrophic corrections to the geostrophic motion u0, v0 and their divergence

differs from zero

∂
(

∇2ψ
)

∂t
+
∂ψ

∂x

∂
(

∇2ψ
)

∂y
− ∂ψ

∂y

∂
(

∇2ψ
)

∂x
= −

(

∂u1
∂x

+
∂v1
∂y

)

− β′
∂ψ

∂x
, (3.130)

where we used the stream function representation (3.126). With help of Eq. (3.129) we

rewrite Eq. (3.130) in the closed form as

∂
(

∇2ψ − F ψ
)

∂t
+
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
+ β′

∂ψ

∂x
= 0, (3.131)

which is traditionally referred to as QG vorticity equation. It governs geostrophically

balanced motions on the β-plane.

One can show that Eq. (3.131) is a statement of conservation for the quantity known

as potential vorticity (PV) (Pedlosky [71]). Within the QG β-plane model PV is given by

the formula

Qg = ∇2ψ − F ψ + f. (3.132)

In this sum the first term is due to the relative vorticity of the flow. The second represents

contribution of the free surface variation (proportional to ψ) and its importance is mea-

sured by the parameter F . And the last term is the the background PV due to planetary

rotation.

Now lets look at the magnitudes of non-dimensional parameters appearing above

when calculated for the major surface currents (note, that we take θ0 ∼ 45◦, hence,

f∗0 ∼ 10−4 1/s). The typical parameter values given in Tabs. 1.1 and 1.2 suggest two

typical scenarios and the following conclusions:

• The QG β-plane model is inappropriate for modelling dynamics of fast and narrow

surface currents, such as the Gulf Stream and Kuroshio, in mid-latitudes:

– condition Ro ∼ ∆ is hardly satisfied and β′ = (∆/Ro) cot θ0 ∼ 0.03, so β-effects

and Rossby waves can be neglected,

– parameter F ∼ 0.005, i.e. L is small compared to Rd.

• Dynamics of slow and wide surface currents, such as the Antarctic Circumpolar

Current, can be well captured by the discussed model:

– condition Ro ∼ ∆ is satisfies and β′ = (∆/Ro) cot θ0 ∼ 10,
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– parameter F ∼ 0.5, i.e. the horizontal length scale L is of the same order as

the Rossby radius Rd.

A useful simplification of Eq. (3.131) emerge when L≪ Rd (F is small).

∂∇2ψ

∂t
+
∂ψ

∂x

∂∇2ψ

∂y
− ∂ψ

∂y

∂∇2ψ

∂x
+ β′

∂ψ

∂x
= 0. (3.133)

This QG model is then referred to as “non-divergent” (as opposed to the original equation

being “divergent”). Note that η ∼ RoF must hold for equations to be consistent and

hence, the elevation of the free surface is exceptionally small and has negligible influence on

the dynamics. Thus, if Rossby deformation radius is infinite then free surface is effectively

flat (i.e. the rigid lid approximation) Fluid motion becomes two-dimensional and, hence,

barotropic. Consequently, Rossby waves found within the framework of Eq. (3.131) are

traditionally referred to as barotropic Rossby waves.



Chapter 4

Gravity Wave Scattering by Zonal

Jets on the f-plane

Here we consider scattering of small amplitude internal gravity waves (IGWs) by surface

currents within the framework of the reduced gravity rotating shallow water (RGRSW)

model for the rotating ocean. The current is represented by a zonal jet in geostrophic

balance which is an approximation for the zonal parts of the major world ocean current

systems (the zonal Kuroshio extension, Gulf Stream extension, and Antarctic Circumpolar

Current, see [23]).

The governing scattering equation (4.21) contains two types of singularities. One is

so-called apparent singularity which does not give rise to actual singular behaviour of the

solution. The other one, so-called critical layer singularity, plays crucial role in wave-flow

interaction theory because at such points wave energy can be transferred to or extracted

from the mean flow or vice-versa. The last case is sometimes referred to as “over-reflection”

or “over-transmission” when the incident wave gives rise to, respectively, a reflected or

transmitted wave with amplitudes greater than that of the incident wave. We solve the

problem numerically and obtain the coefficients of reflection and transmission as functions

of wavenumber.

We find that in some cases over-reflection and over-transmission can be infinitely

strong, i.e. jets can spontaneously emit IGWs. This is so-called resonant over-reflection

where within linear theory reflected and transmitted waves exist without the incoming

incident one. For the first time, resonant over-reflection was found within the framework

of the RGRSW model. The generation mechanism is proposed based on the analogy with

the Schrödinger equation governing scattering of quantum particles by a potential and,

60
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hence, the phenomena is given a physical explanation. In the last section we summarize

and discuss the results.

4.1 Introduction

4.1.1 Surface currents in geostrophic balance

In section 1.1 we discussed the data of oceanographic observations and in §3.5.2 we pre-

sented the mathematical reasonings (leading order asymptotics for Ro ≪ 1) all of which

support the fact that major surface currents in the ocean are largely in geostrophic bal-

ance. Eqs. (3.110)−(3.112) which govern the dynamics of fluid within the RGRSW model

also admit a steady zonal geostrophic current as a solution

u (x, y, t) = U (y) , v (x, y, t) = 0, h (x, y, t) = H (y) , (4.1)

regardless of the fact that Ro = 1 (unlike QG assumption Ro ≪ 1). For the flow of the

form (4.1) RSW equations impose the geostrophy condition

dH

dy
= −U. (4.2)

The zonal current, by definition, is homogeneous in x-direction. We will consider jet-like

currents with natural condition at infinity

H (y) → H±, U (y) → 0 as y → ±∞, (4.3)

where

H+ = H− −
∫ +∞

−∞
U (y) dy. (4.4)

We restrict ourselves to the case of single-extremum but not necessarily symmetric jets.

The unique extremum point is placed at the origin y = 0. Thus, function U(y) is

monotonous on (−∞; 0) and (0;+∞) and either positive or negative everywhere. The

resulting thickness profile H (y) is a smooth monotonous step function. Hence, a bell-

shaped meridionally localised jet U (y) like the one on Fig. 4.1 induces upwelling of the

interface between the active and stagnant layers according to Eq. (4.2). For fast currents

like the Gulf Stream these deviations of the interface can be of the same order as layer

thickness.

Even though purely zonal geostrophic currents are rarely found in the ocean we take
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Figure 4.1: Interface elevation induced by the geostrophic current.

(4.1) as a reasonable approximation for the basic flow. The observed deviations such as

nonzonality and ubiquitous turbulent eddies are not taken into account in this study.

4.1.2 Free inertia-gravity waves

Away from the jet core the fluid layer is motionless and of constant thickness H0. Con-

sider small amplitude perturbations of this state, i.e. look for a solution of the RGRSW

equations (3.110)− (3.112) in the form

u = ε ũ, v = ε ṽ, h = H0 + ε h̃, (4.5)

where ε is small. In these notations the linearized RSW equations are

∂u

∂t
+
∂h

∂x
= v, (4.6a)

∂v

∂t
+
∂h

∂y
= −u, (4.6b)

∂h

∂t
+H0

(

∂u

∂x
+
∂v

∂y

)

= 0. (4.6c)

Cross-differentiating Eqs. (4.6a)− (4.6b) one can relate u and v to h

∂2u

∂t2
+ u = − ∂2h

∂x ∂t
− ∂h

∂y
, (4.7a)

∂2u

∂t2
+ v = − ∂2h

∂y ∂t
+
∂h

∂x
, (4.7b)
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and reduce the system to a single equation for h

(

∂2

∂t2
+ 1

)

h−H0∇2h = 0. (4.8)

This equation has harmonic wave solutions in the form

h = h0 cos (kx+ ly − ωt) (4.9)

which parameters satisfy

ω2 = 1 +H0

(

k2 + l2
)

, (4.10)

where (k, l) is the horizontal wave vector and ω (k, l) is the wave frequency. Note that if

there were no rotation, free IGWs in RGRSW model would be non-dispersive. However,

this is not the case and the dispersion relation (4.10) indicates that the frequency has a

minimum value of ±1 (corresponds to ±f0 in the physical space). Substituting formula

(4.9) into (4.7a) − (4.7b) we obtain the relations (after aligning the x-axis with the wave

vector)

u =
h0
H0

ω

k̂
cos
(

k̂x̂− ωt
)

, (4.11a)

v =
h0
H0

1

k̂
sin
(

k̂x̂− ωt
)

, (4.11b)

where x̂ and k̂ are the transformed x-coordinate and wavenumber. So, as the wave pro-

gresses the velocity vector traces an ellipse in the x − y-plane whose major axis is in the

direction of the wave vector.

Typically, an arbitrary smooth disturbance h (x, y, t) can be written in form of Fourier

integral (note that we specified sign (ω)):

h (x, y, t) = Re

(
∫ ∫

Ck,l exp

(

ik · x− i

√

1 +H0 |k|2t
)

dk dl

)

, (4.12)

where k =(k, l) and x =(x, y). This approach to separate the perturbation into an ensem-

ble of plane waves with help of Fourier integral (4.12) is convenient. However, in reality an

initially localized disturbance gets spread out with time due to the dispersive nature of the

medium. This process is described with help of the concept of a wave packet. The original

disturbance is represented as a superposition of an infinite number of packets of constant

wavenumber, each propagating with its group velocity (LeBlond and Mysak [50]).

Within the RGRSW model the dispersion relation (4.10) entails the following formulae
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for IGW group velocity in calm water ~cgr:

c(x)gr =
∂ω

∂k
=

H0k
√

1 +H0 (k2 + l2)
, c(y)gr =

∂ω

∂l
=

H0l
√

1 +H0 (k2 + l2)
. (4.13)

Hence, the group velocity which defines the direction of energy propagation is aligned with

the wave vector and

sign
(

c(x)gr

)

= sign (k) , sign
(

c(y)gr

)

= sign (l) .

Note that the velocity reaches its maximum group |~cgr| =
√
H0 for short waves and tends

to 0 for long waves. Finally, the group velocity of a wave packet should not be confused

with the phase velocity of a monochromatic wave ~cph which in this case is

c
(x)
ph =

ω

k
=

√

1 +H0 (k2 + l2)

k
, c

(y)
ph =

ω

l
=

√

1 +H0 (k2 + l2)

l
. (4.14)

Now we can consider a situation when IGWs originate in the calm regions far from the

mean flow (regions y → ±∞). They will propagate either towards to or away from the the

jet. However, only incident waves whose group velocities are directed towards the mean

flow are of interest to us. In particular, waves originating at y = −∞ (+∞) propagate

towards the jet when l > 0 (l < 0).

y

c
(x)

gr

c
(y)

gr

U(y)

(k,l, )u

cgr

→

Wave packet

Figure 4.2: Velocity profile U (y) of the jet and an IGW packet propagating with group
speed ~cgr towards the former.

The waves do not encounter any boundaries or obstacles except the zonal jet and after
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penetrating through can propagate freely away. A sketch of the wave-mean flow interaction

problem and a typical velocity profile U (y) of a zonal current is outlined on Fig. 4.2.

4.2 Scattering equation

We consider the problem of propagation of internal gravity waves through a zonal jet.

Hence, small disturbances are imposed upon the basic state specified by Eq. (4.1)

u (x, y, t) = U (y) + ε ũ (x, y, t) , (4.15a)

v (x, y, t) = ε ṽ (x, y, t) , (4.15b)

h (x, y, t) = H (y) + ε h̃ (x, y, t) . (4.15c)

Assuming the fluctuations are of small amplitudes ε one can substitute Eqs. (4.15a) −
(4.15c) into Eqs. (3.110) − (3.112) and subsequently linearize them by discarding terms

proportional to ε2. The resulting system is

∂ũ

∂t
+ U

∂ũ

∂x
+ U ′ṽ +

∂h̃

∂x
= ṽ, (4.16a)

∂ṽ

∂t
+ U

∂ṽ

∂x
+
∂h̃

∂y
= −ũ, (4.16b)

∂h̃

∂t
+
∂
(

Uh̃+ ũH
)

∂x
+
∂ (ṽH)

∂y
= 0, (4.16c)

where prime denotes differentiation with respect to y.

The coefficients of the system of linear PDEs (4.16a)−(4.16c) are independent of x and

t, depending only on y. Hence, one can find solutions with dependence on the former two

variables reduced to an exponential multiplier. Then, the solution of Eqs. (4.16a)−(4.16c)

is represented in the form of Fourier integral

ζ (x, y, t) = Re

(∫ ∫

ζ̂k,ω (y) e
ikx−iωt dk dω

)

, (4.17)

where ζ (x, y, t) denotes either of the functions ũ, ṽ and h̃. Function ζ̂k,ω (y) describes the

scattering of an incident unitary wave with parameters k and ω by the background flow.

Formula (4.17) contains a simple physical notion that during the interaction with a

zonal flow free waves oncoming from infinities preserve their latitudinal wavenumbers k

and frequencies ω. At the same time, the meridional wavenumber l of a wave disturbance

can only be defined far from the shear and differs at y → ±∞.
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Substitution of a single mode (4.18)

ũ = Re
[

û(y) eikx−iωt
]

, ṽ = Re
[

v̂(y) eikx−iωt
]

, h̃ = Re
[

ĥ(y) eikx−iωt
]

, (4.18)

into Eqs. (4.16a)− (4.16c) yields (omitting the hats)

i (kU − ω)u+
(

U ′ − 1
)

v + ikh = 0, (4.19a)

i (kU − ω) v + u+ h′ = 0, (4.19b)

i (kU − ω) h+ ikHu+ (Hv)′ = 0. (4.19c)

Resolving Eqs. (4.19a)−(4.19b) with respect to u and v and substituting resulting formulae

u =
k (ω − kU)h− (U ′ − 1) h′

(ω − kU)2 + (U ′ − 1)
, (4.20a)

v = −i kh+ (ω − kU) h′

(ω − kU)2 + (U ′ − 1)
, (4.20b)

into Eq. (4.19c) we obtain a single 2nd order ODE governing the surface height perturba-

tion mode h
(

Fh′
)′
+

(

kF ′

ω − kU
− k2F + 1

)

h = 0, (4.21)

where

F =
H

(ω − kU)2 − 1 + U ′ . (4.22)

4.2.1 Boundary conditions

The scattering problem (4.21) under consideration should be supplemented with boundary

conditions at y → ±∞. In the limit y → ±∞ the Eq. (4.21) simplifies to

hyy + l2± h = 0, (4.23)

where l±, defined by

l2± =
ω2 − 1

H±
− k2, (4.24)

are the y-wavenumbers at the two sides of the jet. Hence, far from the jet’s core the

solutions turn into free propagating IGWs (if l2±∞ > 0). Essentially, formula (4.24) is the

dispersion relation (4.10) for free IGWs.

Formula (4.24) implies that knowing two characteristics k and ω of the harmonic allows
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us to find the “secondary” parameters l±. However, the boundary conditions are easier

formulated using the wave vector (k, l±) of the incident wave as the primal parameter (for

waves incoming from ±∞ respectively). The two meridional wavenumbers are related by

the formula

l+ =

√

H−l2− − (H+ −H−) k2

H+
. (4.25)

Note that the right hand side of (4.25) can give complex-valued numbers, say, if l− is

small and H+ > H−. It entails that not all the waves propagating from the infinity where

the layer is shallower can penetrate the jet barrier and reach the opposite side. This can

be better understood with help of the dispersion relation (4.10). As mentioned above, a

cross-jet propagating wave retains its k and ω parameters while l is adjusted to satisfy

the the dispersion relation. The latter can become complex l2±∞ < 0 in which case the

appropriate sign of Im l+ is chosen to ensure decays at y → +∞. Note that for l+ to be

real, the following condition must hold

|l−| ≥ |k|
√

H+

H−
− 1. (4.26)

Without loss of generality we consider an IGW of unit amplitude incident upon the

zonal current from y → −∞. It gives rise to a reflected wave propagating towards y → −∞
and transmitted wave at y → +∞ as shown on Fig. 4.3. Then, the boundary conditions

for the scattering problem are

h→ eil−y +rk,l e
−il−y as y → −∞,

h→ tk,l e
il+y as y → +∞,







(4.27)

where rk,l and tk,l are coefficients of reflection and transmission. Although, if inequality

(4.26) is not satisfied and l+ is imaginary we impose the decay condition at y → +∞

h→ eil−y +rk,l e
−il−y as y → −∞,

h→ tk,l e
−|l+|y as y → +∞.







(4.28)

So, Eq. (4.21) together with (4.27) or (4.28) form a well-posed boundary-value problem

which determines r and t together with the mode h (y).
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Figure 4.3: Scattering of waves by the jet.

4.2.2 Singular points of Eq. (4.21)

We rewrite Eq. (4.21) as

(

H

A
h′
)′

+

(

k

Ω

(

H

A

)′
− k2

H

A
+ 1

)

h = 0, (4.29)

where the following notation is ushered

Ω = ω − kU, A = Ω2 − ω2
i , ω2

i = 1− U ′. (4.30)

Function Ω represents the intrinsic wave frequency (relative to the jet). Function ω2
i is

related to the sufficient condition for a zonal geostrophic flow on an f -plane to be inertially

stable:

ω2
i > 0 or f

(

f − U ′) > 0 (4.31)

in dimensional variables (see Holton [34], Gill [27]).

Easy to notice that Eq. (4.29) contain two types of singularities, which will be denoted

by yc and ya. One is associated with so-called critical layers yc where the intrinsic wave
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frequency vanishes

Ω (yc) = ω − kU (yc) = 0 (4.32)

or, equivalently, the phase velocity in x-direction c
(x)
ph = ω/k matches the mean flow

velocity U (yc) = c
(x)
ph . Singularities of another type, so-called apparent singularities ya,

occur when the denominator of (4.22) vanishes

A (ya) = [ω − kU(ya)]
2 − 1 + U ′(ya) = 0. (4.33)

The type of critical layer singularity in Eq. (4.21) is similar to that examined by

Booker in [8]. These authors were first to acknowledge the crucial role that it plays in

wave-flow interaction theory because waves and the zonal jet can exchange energy there.

As the result propagating waves can be absorbed or amplified by the mean flow.

The inequality

∣

∣

∣
c
(x)
ph

∣

∣

∣
=
√

H0

√

1 + l2/k2 + 1/ (H0k2) >
√

H0 (4.34)

entails that only fast jets (maxy∈R |U (y)| >
√
H0) can produce critical layers for IGWs.

Also note that a wave can encounter a critical layer yc only when k and U (yc) are of the

same sign (kU (yc) = ω > 0).

Later we will see that singularities ya do not give rise to actual singular behavior in

the solution and h (y) remains smooth in their vicinity. Accordingly, points ya are referred

to as apparent singularities. Within the context of GFD apparent singularities were first

described by Boyd [9] (in his notations, ∆ = 0 singularity) and later by Dunkerton [24].

Finally, we assume that singular points of different types do not coincide,

yc 6= ya,

and that the singularities are simple poles, i.e.

U ′(yc) 6= 0, 2 [ω − kU(ya)]
[

−kU ′(ya)
]

+ U ′′(ya) 6= 0.

Apparent singularity

Here we show that two fundamental solutions of Eq. (4.21) are regular in the vicinity of

an apparent singularity ya. Frobenius method can be applied to find the general solution
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in form of infinite series (similarly to how it is done in Appendix A for critical layers)

h = C1
a

[

1− k

Ωa
ξ +O

(

ξ2
)

]

+ C2
a

[

ξ2 +O
(

ξ3
)]

as y → ya, (4.35)

where ξ = y − ya; C
1
a and C2

a are constants of integration and superscript ′a′ denotes

that the function is evaluated at ya. To derive (4.35) we will not apply Frobenius method

directly but rather illustrate how the general solution happens to be regular.

The alternative method is to expand the coefficients in Eq. (4.29) as series in ξ = y−ya.
Retaining only terms containing negative powers ξ we obtain

(

h′

ξ

)′
+

(

p

ξ2
+
q

ξ

)

h′ = 0, (4.36)

where

p = − k

Ωa
, q =

(

k

Ωa

)2((Ω′)a

k
− (Ωa)2

)

. (4.37)

Taking into account the definition of points ya

Aa = − (Ωa)2 +
(Ω′)a

k
+ 1 = 0, (4.38)

we find that

p2 + q =
k2

(Ωa)2

(

− (Ωa)2 +
(Ω′)a

k
+ 1

)

= 0. (4.39)

Condition (4.39) allows Eq. (4.36) to be transformed into

(

d

dξ
+ p− 1

ξ

)(

d

dξ
− p

)

h = 0. (4.40)

The latter has two regular fundamental solutions which can be calculated by hand

ϕ1 = exp (pξ) and ϕ2 = (2pξ + 1) exp (−pξ) . (4.41)

The first terms of Taylor expansion of ϕ1 match the first fundamental solution in (4.35)

ϕ1 − ϕ2 match the second one. It is condition (4.39) which directly follows from the

definition of apparent singularities (4.33) that cancels singular logarithmic terms in the

general solution of Eq. (4.36) with arbitrary p and q.
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Critical layer singularity

Here, we examine the behavior of the solution of Eq. (4.21) in the vicinity of critical layer

singularities (4.32). The simplest equation to contain a singularity of this type is

d2z

dx2
− z

x
= 0. (4.42)

It is well-known that one of the fundamental solutions of Eq. (4.42) have a logarithmic

branch point at x = 0.

In Appendix A we found the solution of Eq. (4.21) in asymptotic series around

critical layers yc

h = C1
c

[

1 +

(

F ′

FU ′

)c
[

η ln η + 1
2

(

1−
(

U ′)c) η
]

+O
(

η2 ln η
)

]

+ C2
c

[

η +O
(

η2
)]

as y → yc, (4.43)

where η = y − yc and C
1
c and C2

c are constants of integration; superscript ′c′ denotes that

the function is evaluated at yc. Hence, the question arises of how to choose the physically

correct branch of the logarithm in (4.43) for η < 0.

Classical theory of hydrodynamic stability prompts to introduce infinitesimal dissipa-

tion into Eq. (4.21) in order to regularize the behaviour of h (y) at critical layers (Rayleigh

[74]). This determines the choice of logarithm branch and, hence, fixes the integration con-

tour around the singularity in the complex plane.

Curiously, the results of regularization do not depend on the used dissipation model

(e.g. Case [14], Maslowe [60]). So, instead of the introducing physical viscosity into

RGRSW model we shall simply adjust the frequency ω to have a positive imaginary part

(which is sometimes referred to as the “Rayleigh viscosity”).

So, we introduce infinitesimal Rayleigh viscosity into Eq. (4.21) replacing ω with ω+i0

(

Fh′
)′
+

(

kF ′

ω + i0− kU
− k2F + 1

)

h = 0, (4.44)

F =
H

(ω + i0− kU)2 − 1 + U ′ . (4.45)

Then, multiplying Eq. (4.44) by the complex conjugate of h and taking the imaginary

part we obtain

(Wh)
′ + kF ′ Im

(

1

ω + i0− kU

)

|h|2 = 0, (4.46)
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where we introduced the Wronskian of the solution h (y)

Wh = F Im
(

h′h∗
)

. (4.47)

Eq. (4.46) is derived under implicit assumption that F is real which implies that A 6= 0.

However, calculations inAppendix B show the equation is valid everywhere and apparent

singularities ya are no exception.

Making use of the Sokhotsky–Weierstrass formula from the theory of generalized func-

tions Im (α+ i0)−1 = −πδ (α) (see Vladimirov [86], ) we acquire

(Wh)
′ = πkF ′ |h|2 δ (ω − kU) , (4.48)

where we ushered the Dirac delta function δ (y). In what follows, with help of formula

(4.48) conclusions about energy exchange during the interaction between waves and back-

ground flow will be derived.

Note that the Wronskian defined by (4.47) is closely related to the wave energy flux

τ (k, l, y) conveyed by individual inertia-gravity waves. With help of Eqs. (4.20a)−(4.20b)

we derive

τ ≡ H Re (uv∗) = H Re
(

k(ω−kU)h−(U ′−1)h′

(ω−kU)2+(U ′−1)

(

−i kh+(ω−kU)h′

(ω−kU)2+(U ′−1)

)∗)
=

= kH Im(h′h∗)

(ω−kU)2+(U ′−1)
= k Im (Fh′h∗) = kWh

(4.49)

Making use of the formula δ [f (q)] = |df/dq|−1 δ (q − q0), where q0 is a root of f (q)

(f (q0) = 0) we can integrate Eq. (4.48) to find the value of the jump in Wh (and, hence,

momentum flux τ) across a critical layer yc

Wh|yc+0
yc−0 =

1
k τ |

yc+0
yc−0 = sign (U) π

(

F ′

|U ′| |h|
2
)c

=

= sign (U)π
(

Q′|h|2
Q2|U ′|

)c
,

(4.50)

where the equality sign (k) = sign (U) was used and

Q(y) =
1− U ′

H
=
ω2
i

H
(4.51)

is the jet’s potential vorticity (PV) (Pedlosky [71]).

Hence, critical layers play crucial role in wave-flow interaction process. The delta

function in Eq. (4.48) indicates that within the framework of linear theory each wave
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interacts with the mean flow in its critical layer. In the absence of critical layers Eqs.

(4.48) and (4.50) imply that the momentum flux τ is constant. Vice versa, when intrinsic

wave frequency Ω = ω − kU vanishes for some value yc the flux τ and the Wronskian Wh

undergo a jump in their values there and exchange in energy occurs.

4.2.3 Over-reflection and absorption

Now when we have investigated the local influence of the singularities on the solution, the

integral scattering properties of the mean flow will be discussed. While the exact values of

the scattering coefficients rk,l and tk,l can be determined only together with the solution h

of the boundary-value problem (4.44), (4.27) (or (4.28)), a useful unitarity condition can

be obtained (see Appendix B)

l+H+T
2 + l−H−

(

R2 − 1
)

= sign (U) π
(

ω2 − 1
)

∑

c

[

Q′ |h|2
Q2 |U ′|

]

y=yc

, (4.52)

where R = |rk,l| and T = |tk,l|. Note that apparent singularities do not contribute to the

unitarity condition – hence, wave energy is neither generated nor absorbed there. Formula

(4.52) can be rewritten as a relation between the amplitudes of reflected and transmitted

waves and total jump in the Wronskian (and momentum flux)

S2(k, l−) ≡ R2 +
l+H+

l−H−
T 2 = 1 +

k2 + l2−
|l−|

Wh|+∞
−∞ , (4.53)

where we ushered non-unitarity coefficient S which is a convenient characteristic of scatter-

ing problem. The latter is similar to the unitarity condition (1.24) for the 1-D Schrödinger

equation (see §1.1.4).
In the case when Eq. (4.21) has no critical layer singularities the right-hand side of

(4.52) vanishes, and the unitarity condition reduces to a requirement that the energy fluxes

of the reflected and transmitted waves add up to that of the incident wave. And Eq. (4.53)

transforms into

R2 +
l+H+

l−H−
T 2 = 1. (4.54)

It indicates that wave energy is conserved. The multiplier l±∞H±∞/ (l∓∞H∓∞) is at-

tributed to the fact that energy of free shallow water gravity waves depends on the depth

of the fluid layer and the wavenumber.

If, however, critical levels are present, the wave energy is not conserved. It is generated

or dissipated depending on the sign of the jump in the Wronskian across the critical layers
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(a) Over-reflection with T ≈ 0.32, R ≈ 1.28 and S ≈ 1.31 for (k, l−) = (−7, 11).
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Figure 4.4: Examples of scattering of IGWs by a Bickley jet (4.55)–(4.57) (see next sec-
tion). Apparent singularities and critical layers are denoted by boxes and circles.
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as Eq. (4.53) shows. The latter is determined by the PV gradient at y = yc as described

by Eq. (4.50):

• if sign (U)Q′(yc) > 0, then critical level yc amplifies the wave (conductive to over-

reflection),

• if sign (U)Q′(yc) < 0, the critical level absorbs the wave (conductive to absorption).

Typically, two critical levels arise for the bell-shaped jets given considered in this work.

And it is a commonplace situation that one of the critical layers absorbs the wave while the

other amplifies. This means that the total increase/decrease of wave energy is determined

by the 2 critical layers collectively:

• if Wh|+∞
−∞ > 0, then S > 1 and the wave is over-reflected,

• if Wh|+∞
−∞ < 0, then S < 1 and the wave is absorbed.

Strictly speaking, over-reflection (over-transmission) happens when the amplitude of

the reflected (transmitted) wave are greater that 1. Although, in this work we use these

terms to describe the case when S > 1 even if R < 1 or T < 1.

4.3 Numerical results

Although being linear, Eq. (4.21) seems too complicated to be resolved analytically for

any value of k except maybe for k = 0. Therefore, the scattering problem is integrated

numerically in order to find reflection and transmission coefficients. The input parameters

include the layer’s depth H (y) and wavenumbers k and l± of the incident wave (ω and

l∓ are calculated with help of Eqs. (4.10) and (4.24)). We will present the results for the

so-called Bickley jet,

H = 1 + 1
2∆H tanh

y

W
, (4.55)

which determines U (y) according to Eq. (4.2) as

U = −1
2

∆H

W
sech2

y

W
, (4.56)

where ∆H is the depth change across the jet and W is the jet’s width. Note that, for

positive ∆H and W , the jet flows westwards (U < 0).

The boundary-value problem (4.21) , (4.27) / (4.28) was solved numerically using an

algorithm described in Appendix C and implemented in Matlab. We calculate S for



76

Figure 4.5: Filled contour plot displays isolines of non-unitarity coefficient S as function
of wavenumbers (k; l−). Regions of absorption (S < 1) and over-reflection (S > 1) are

shown in shades of blue and red respectively. A curve of fixed c
(x)
ph = −1.34929 for Fig.

4.6 is indicated by a magenta dashed line.

wavenumbers
{(

ki, lj−
)}

i,j
which can be visualised as points of a uniform grid for a

rectangular
[

kmin; kmax
]

×
[

lmin
− ; lmax

−
]

for jet (4.55) with

∆H = 1, W = 0.25. (4.57)

2D contour plot displaying isolines of the non-unitarity function is shown on Fig. 4.5. The

following observations should be made:

• For sufficiently large values of the incident wavenumber l−, the waves no longer

encounter any critical layers because c
(x)
ph > max

y
U and Eq. (4.32) has no solutions.

Hence, according to (4.54) S = 1 there.

• For small l−, the transmitted wave does not exist (becomes “non-propagating”).
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Indeed, as follows from (4.25), if l− does not satisfy condition (4.26) then l+ is

imaginary. The reflected wave still exists, however, and R can still be computed if

decay boundary conditions (4.28) are used. However, the shaded regions on Fig. 4.5

are not particularly interesting as S ∼ 1 there.

4.3.1 Resonant over-reflection

Next we will specifically examine the region of intense over-reflection. It will be convenient

to keep the zonal phase speed c
(x)
ph constant (which fixes the location of the critical level)

and plot the non-unitarity coefficient S as a function of l− for various values of ω/k. An

example of such a curve in the (k, l−) space along which S is plotted is given on Fig. 4.5.
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ω /k = -1.34929ω /k = -1.34929

Figure 4.6: The dependence of the non-unitarity coefficient S on the meridional wavenum-
ber l− of the incident wave, for the Bickley jet (4.55)–(4.57). Each curve is computed for a
fixed value of the phase velocity ω/k (indicated on the graph). The curves are terminated
in the small−l− region of no-transmission.

Unexpectedly, anomalously high over-reflection is found for ω/k ≈ −1.34 and l− ≈ 11

as shown on Fig. 4.6. The corresponding value of the zonal wavenumber [which can be

determined using (4.24)] is k ≈ −6.9.

Additional computations specifically targeting the region of anomalously large S were

performed. When the maximum of S at grid points
{(

ki, lj−
)}

i,j
is found the algorithm

zooms into a small region around the maximum and continues the calculations on a finer

grid in this region. The iterations are terminated when sufficiently large values of S are



78

found or no significant increase is observed. As Fig. 4.6 suggests, the peaks in S appear to

be extremely narrow and, consequently, a fine initial grid
{(

ki, lj−
)}

i,j
and high precision

of calculations are needed. We also emphasise that, even though Fig. 4.6 illustrates the

results with moderate S, the full range of the computations performed reached S ∼ 1000

and higher.

Hence, numerics suggest that for certain values k = K and l− = L−, the non-unitarity

coefficient S is truly infinite – i.e. over-reflection turns into hyper -reflection. In the

literature ([54], [62]) this phenomena is referred to as resonant over-reflection. For the

Bickley jet (4.55)− (4.57) the wave vector for which resonant over-reflection occurs is

K ≈ −6.8665, L− ≈ 11.0693. (4.58)

Some numerical characteristics of the solution are presented on Fig. 4.7. So far, this

Figure 4.7: An example of resonant over-reflection of a wave (4.58) with T ≈ 447.5,
R ≈ 651.29, S ≈ 768.55 |a| ≈ 0.002. The mean flow profile and other notations are the
same as in Fig. (4.4).

conclusion is based on numerical evidence only – but later it will be supported by analytical

and qualitative arguments.
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But how can the non-unitarity coefficient S become infinite? When looking at formula

(4.53) one is tempted to conclude that because infinite S require infinite discontinuity in

WronskianWh, then Wronskian must also be infinite in a non-singular region. This appar-

ent contradiction can be easily explained. As described in Appendix C the boundary-

value problem (4.21), (4.27) is integrated starting from the transmitted wave (of unitary

amplitude). Then, complex amplitudes a and b (see (C.3)) of the corresponding incident

and reflected waves are found. Hence, according to (C.4) if the incident wave amplitude is

small a (K,L−) ∼ 0 then the reflection and transmission coefficients R and T (which are

∼ |a|−1) approach infinity. Therefore, this phenomena can be interpreted as spontaneous

emission of IGWs by zonal jets within the framework of the RGRSW model.

Easy to notice that for such radiating solution with boundary conditions

h→ b e−il−y as y → −∞,

h→ eil+y as y → +∞,







(4.59)

unitarity condition (4.53) transforms into

|b|2 + l+H+

l−H−
=
k2 + l2−
|l−|

Wh|+∞
−∞ . (4.60)

This condition implies Wh|+∞
−∞ > 0 which requires at least one critical layer of amplifying

type as discussed in §4.2.3.
The asymptotics of S as (k, l−) → (K,L−) turned out to be difficult to compute. We

can only state that S ∼ |a|−1 according to the definition (4.53). Additionally, we checked

that the integral of S in the (k, l−) plane over a region including the hyper-reflection point

(K,L−) diverges.

4.3.2 Dependence on flow parameters

Clearly, at most countable number of radiating wave solutions satisfying the boundary-

value problem (4.21), (4.59) can exist. The numerical results obtained for the Bickley jets

given by (4.55) indicate that this solution is unique for every jet. We have computed the

hyper-reflection wave vector (K,L−) as a function of the jet’s parameters: the jet’s width

W and the depth change ∆H. The results are shown in Figs. 4.8, 4.9.

The given dependence onW demonstrates that as the jet’s core becomes narrower, the

hyper-reflected wave becomes shorter (L− → ∞). It would be interesting to investigate

the limit of these velocity profiles as W → 0. Then H becomes a step-function and its



80

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-20

0

20

40

60

80

100

W

K
, 

L
-

L
-

K

Figure 4.8: The wave vector (K,L−) of the hyper-reflected wave vs. the width W of the
Bickley jet (4.55) with ∆H = 1.
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Figure 4.9: The wave vector (K,L−) of the hyper-reflected wave vs. the depth change
∆H of the Bickley jet (4.55) with W = 0.25. The medium becomes non-transparent as
y → +∞, i.e. l+ becomes imaginary.
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derivative U is proportional to Dirac’s delta function δ (y) and our results would be possible

to compare with a recent study of instabilities of such flow by Dritschel & Vanneste [22].

It has to be noted that a geostrophically balanced localised jet flow and the corresponding

shelf in the free surface are perfectly valid solution of the RGRSW model as well as

the full Euler equations. However, as the wavelength of IGWs tends to 0 they eventually

violate the implicit long-wave approximation of the RGRSWmodel and the results become

inapplicable.

The dependence of (K,L−) on the depth change across the jet is shown in Fig. 4.9.

Observe that, as ∆H → 2, the meridional wavenumber L− of the incident wave tends to

infinity. This is caused by the fact that, in this limit, the ocean’s depth H(y) vanishes at

y → −∞. For ∆H . 0.906, the meridional wavenumber L+ becomes imaginary, i.e. no

transmitted wave exists. Note, however, that hyper-reflection can still occur for this range

of ∆H (as the reflection coefficient can still be infinite), and our computations show that

L → 0 as ∆H → Hmin, where Hmin can be calculated from the requirement that critical

layers must be present and condition (4.34)

|maxU | = 1
2

∆H

W
>

√

1− ∆H

2
=
∣

∣

∣
min c

(x)
ph

∣

∣

∣
(4.61)

Finally, observe that the zonal wavenumber K does not change much through the whole

range of ∆H.

4.4 Physical interpretation

Here we provide some analytical considerations giving an important insight into the mech-

anism of hyper-reflection. Using substitution ψ = F 1/2h we can rewrite Eq. (4.44) in its

normal form

− ψ′′ + Pψ = l2ψ, (4.62)

where the subscript ′−′ was omitted from l− and

P (y) =
2FF ′′ − (F ′)2

4F 2
− k

ω + i0− kU

F ′

F
− 1

F
+ k2 + l2. (4.63)

The sign of P (y)− l2 determines whether the solution oscillates or decays exponentially.

As outlined in §1.1.4, Eq. (4.62) can be perceived as the time-independent Schrödinger

equation for a “quantum particle” with momentum l scattered by the “potential” P (y).

Note also that such analogy between quantum particles and oceanic waves has been has
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been previously employed in the geophysical literature (see, e.g., a recent paper by Le

Dizès & Billant [49]).

Observe that potential P (y) blows up at the singularities ya and yc as can be seen on

Fig. 4.7. Typically, the jets given by (4.55) has potential P (y) with two critical levels

and two apparent singularities. Asymptotic behavior of P (y) at an apparent singularity

ya is ∼ (y − ya)
−2. A singularity of this type in the potential acts as a strong barrier and

impedes propagation of waves past the singularity (see Landau [48]). Most importantly,

Fig. 4.7 illustrates that an amplifying critical level (Q′ > 0, Wh|yc+0
yc−0 > 0) is located

in-between two apparent singularities. Also, note that “wave amplitude” |h (y)| reaches
its maximum in this region. This indicates that waves are somewhat captured there.

These observations suggest the following interpretation of hyper-reflection: imagine

a wave “oscillating” to and fro between two apparent singularities acting as barriers.

Then, the wave undergoes multiple over-reflection at the amplifying critical level and its

amplitude grows. Within the framework of this model, resonant over-reflection occurs if

the amplification of the wave by the critical level compensates the loss of wave energy

through the barriers. Note, however, that a certain restriction must placed on the phase

of the “bouncing” wave after it went through one “to and fro” cycle. Otherwise the

interference will weaken rather then strengthen it.

4.4.1 Resonance between two potentials

We discuss this idea in more details within the framework of a toy model presented on Fig.

4.10 and investigate the possibility of resonant over-reflection in this model. Two (regular)

potential barriers with an amplifier in-between are supposed to act as a prototype for the

original potential P (y) (4.63)

ψ′′ + k2ψ = Ptoy (x)ψ + i∆ δ (x)ψ, (4.64)

where

Ptoy = P1 + P2, (4.65)

and P1,2 are functions with compact supports,
[

x−1 , x
+
1

]

and
[

x−2 , x
+
2

]

, such that

x−1 < x+1 < 0 < x−2 < x+2 ; (4.66)

∆ > 0 characterise the strength of amplification.
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Figure 4.10: A schematic illustration of wave scattering by two potentials with compact
non-overlapping supports P1 and P2 with an amplifier i ∆ δ (x) in-between. Transmission
and reflection coefficients of the potentials P1,2 are t1,2 and r1,2 respectively.

For both potentials P1,2 we know the usual “from-left-to-right” scattering coefficients

r1,2 and t1,2

− ψ′′
1,2 + P1,2 ψ1,2 = l2 ψ1,2, (4.67)

ψ1,2 → eily +r1,2 e
−ily for y < x−1,2,

ψ1,2 → t1,2 e
ily for y > x+1,2.







(4.68)

For the first jet, we introduce auxiliary “from-right-to-left” coefficients r′1, t
′
1,

− ψ′′
1 + P1 ψ1 = l2 ψ1, (4.69)

ψ2 → t′1 e
−ily for y < x−1 ,

ψ2 → e−ily +r′1 e
ily for y > x+1 .







(4.70)

The global scattering coefficients r and t of the system in Fig. 4.10 can be found in terms

of r1,2, t1,2 and ∆. The calculations involved are given in Appendix E, whereas here

we shall only discuss the final result. The “no incident wave” condition (E.9) determines

when the global scattering coefficients are infinite, i.e. when hyper-reflection occurs.

A reader familiar with quantum mechanics might associate the setting illustrated in

Fig. 4.10 with the so-called resonant tunneling phenomenon. It was described by David

Bohm in 1951 [7] who showed that for certain incident particles the transmission coefficient

is equal to one, i.e. the double barrier is totally transparent for them. The situation that
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could never happen for a single potential barrier.

However, we are looking for resonant over-reflection, i.e. solutions with infinite scatter-

ing coefficients. Hence, anticipating that singularities in the potential are a prerequisite we

adjusted the setting by introducing an amplifier i ∆ δ (x) in the double-barrier potential.

Indeed, if classical unitarity condition (1.24) holds for the potentials P1,2

|r1,2|2 + |t1,2|2 = 1, (4.71)

and ∆ = 0 then easy to check that “no incident wave” condition (E.9) is never be satisfied.

Which implies that resonant over-reflection cannot exist.

The amplifying/absorbing term i ∆ δ (x)ψ in Eq. (4.64) can be “built into” the

potentials P1,2. Then no incident wave condition (E.12) can be written as

r′1r2 = 1, (4.72)

where for the first barrier P1 we used “right-to-left” r′1, t
′
1 scattering coefficients instead

of “left-to-right” ones.

4.4.2 Discussion

Physically this result means the following. If we put a wave propagating to the right

in-between two barriers, it will reach P2 and a part of it will be reflected back. This

reflected wave is then scattered by the first barrier P1. So, condition (4.72) means that

after two successive reflections from P1 and P2 the returning wave augmented by factor

r′1r2 is identical to the original wave, i.e. phase and amplitude are unchanged.

Following this logic, having r′1 and r2 such that

r′1r2 > 1 (real number), (4.73)

results in a wave regaining its original phase and increasing its amplitude after two suc-

cessive reflections. It is intuitively clear that the situation defined by (4.73) gives rise to

an exponentially growing solution. Yet scattering coefficients remain finite in this case!

Hence, we conjecture that the corresponding scattered wave solution with finite R and T

coexists with a solution with imaginary ω and l (growing in time and decaying in space).

Thus, the steady scattering component is likely to be virtually “invisible” against the

background of growing unstable field. These ideas are elaborated in Chapter 6.
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We shall also point out that:

• Hyper-reflection by a two-potential configuration never occurs if the potentials are

mirror images of one another. In this case r′1 = r2 – hence, condition (4.72) holds

only if r′1 = r2 = ±1. As a result, R and T remain finite according to (E.13) as the

zero denominators are cancelled out by zero numerators.

• If the potentials have identical shapes (i.e. can be obtained from one another by

translation along the y axis), the transmission coefficient T remains finite even if

condition (4.72) does hold. In this case, it can be shown that

r2 = −(r′1)
∗ t′1

(t′1)
∗ eilD,

where D is the distance between the potentials. Then, (4.72) implies that

|r1|2 = 1,

and formulae (E.13) show that T remains finite (but R can still be infinite).

As two barriers Q1 and Q2 come closer and finally merge together we return to our

original problem with the potential from §4.4. Hence, condition (4.72) cannot be applied

directly but we believe that it is the multiple over-reflection that drives resonant over-

reflection. This interpretation resembles the concept of resonance. And, hence, the name

of the phenomena acquires new meaning.

We will test the proposed explanation of the mechanism in the next chapter with help

of a specifically constructed for this sake problem of Rossby wave scattering by a two-jet

configuration on the QG beta-plane.

4.5 Summary

In this chapter a linear model is presented describing the scattering of small amplitude

IGWs by a zonal jet in a two-layer rotating ocean. The results obtained within this rather

simple model can give insight on how internal waves interact with strong surface currents

that flow as a narrow zonal jet (in particular the eastward flowing Gulf Stream Extension,

the Kuroshio Extension, the Agulhas Return Current and the Antarctic Circumpolar Cur-

rent). Although, maybe with the exception of the latter, neither of these are strictly zonal,

(in fact, the Gulf Stream and Kuroshio are classified as “western boundary currents”) they
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turn to mostly zonal for a part of their path. For example, the Gulf Stream separates from

the US coast near Cape Hatteras, the Kuroshio Extension leaves the Japanese coast near

∼ 45◦N, and both become (meandering) eastward-flowing currents (see Ducet and Le

Traon [23]).

Eq. (4.21) governing propagation of IGWs through the background flow contains

apparent singularities (Boyd [9]) and critical layers (Booker & Bretherton [8]) where non-

trivial interaction with the mean flow, i.e. absorption or over-reflection/over-transmission,

can occur. We show that the sign of the jump in the wave flux across the critical layers

is determined by the sign of the PV gradient according to Eq. (4.50). Thus, we derived

the aggregate energy exchange condition (4.52) which determines whether the interaction

results in absorption or over-reflection/over-transmission

In §4.3 we present the results of calculations of reflection and transmission coefficients

as functions of two wavenumbers of the incident wave (k, l) for a two-parametric (∆H, W )

family of Bickley jets (4.55). Numerical integration of the singular scattering equation

(4.21) was implemented in Matlab using an algorithm described in Appendix C. The

scattering properties of a given jet can be succinctly shown on a 2D contour plot displaying

isolines of the non-unitarity function.

The main results can be summarized as follows:

• In the (k, l) parameter plane 3 distinct regions are typically present (e.g. Fig. 4.5):

– Incident waves with phase speeds satisfying c
(x)
ph > max

y
U do not encounter any

critical layers when it propagates across the jet and according to (4.54) in this

case S = 1.

– For sufficiently small l− (when condition (4.26) is violated) the incident wave

cannot penetrate the jet barrier and the transmitted wave does not exist T = 0.

The reflection coefficient R, however, can still be computed but usually S ∼ 1

there as the “non-propagating” region is conductive to complete reflection and

the critical layers have no significant effect on the wave propagation.

– Finally, the incident waves with parameters from the middle region on Fig. 4.5

typically have two apparent singularities interchanging with two critical level

(an absorbing and an amplifying one, Fig. 4.4). Cases of significant over-

reflection, over-transmission and absorption occur.

• For the first time, we found cases of resonant over-reflection within the framework

of the RGRSW model as the calculations indicate that at a certain point on the
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(k, l) parameter plane reflection and transmission can be infinite. Dependence of

the hyper-reflection wave vector (K,L−) on the jet’s width W and depth change

∆H was investigated (Figs. 4.8, 4.9).

• Generally, numerics suggest that linearly stable flows never over-reflect waves (i.e.

S ≤ 1) while unstable flows manifest over-reflection and even hyper-reflection. This

important finding of the study will be further supported by analytical arguments

in Chapter 6 where we show that a resonant over-reflected coexists with radiating

instabilities.

In §4.4 a physical interpretation of the phenomenon of resonant over-reflection is given

with help of transforming scattering Eq. (4.21) into its Schrödinger-type formulation

(4.62). We argued that two apparent singularities act as containing barriers for the am-

plifying critical level in-between where multiple over-reflection can happen.



Chapter 5

Rossby Wave Scattering by Zonal

Jets on the β-plane

In this chapter we consider the problem of scattering of small amplitude Rossby waves by

jets on a barotropic β-plane governed by quasi-geostrophic (QG) equation Eq. (3.133).

This classical model is traditionally applied to study planetary-scale Rossby waves and

their interaction with surface currents and bottom topography. In particular, the critical

layer theory is well-developed since early works by Dickinson & Clare [20], Lindzen & Tung

[55], Yamada & Okamura [89] (see also a review article by [60]). Thus, we will concentrate

on a special case where the mean flow is represented by two localized zonal jets. We will

refer to this velocity profile as a two-jet configuration. This problem emerged as a testing

ground for the double-barrier concept of resonance over-reflection proposed in §4.4.
Nevertheless, multiple zonal jets are widely found in geophysical systems. Double

(multiple)-jet flows are known to be more persistent and less prone to fluctuation and

meandering than single jets (Lee [51]). Antarctic Circumpolar Current provides an exelent

example of a multiple-jet zonal flow in mid-latitudes (Sokolov and Rintoul [81]). Long-lived

zonal jets are present in the Earth’s tropical ocean and are ubiquitous in the atmospheres

of Jupiter and Saturn. All this provides additional motivation for this problem.

Corresponding scattering equation (5.14) is somewhat similar to Eq. (4.21) studied

in Chapter 4. Although, it is simpler and is essentially a slight modification of Rayleigh

stability equation (e.g. Lin [52], Kuo [45]). The governing equation contains only critical

layer singularities and no singularities of any other type. As discussed above critical

layers lead to non-trivial interaction with the mean flow which results in over-reflection

or absorption of waves. We solve the problem numerically and find the coefficients of

88



89

reflection and transmission as functions of wavenumbers and parameters of the jet.

As anticipated from the ideas presented in §4.4, we find that the two-jet configuration

can hyper-reflect waves. The scattering coefficients of the hyper-reflected waves satisfy the

theoretically derived condition (4.72). Hence, we assert the validity and generality of the

results obtained in Chapter 4 which can be applied to any scattering problems regardless

of the model.

5.1 Introduction

5.1.1 Two-jet configuration

Recall that many of ocean surface currents and atmospheric winds are roughly geostroph-

ically balanced (see Chapter 1.1). Also note that solutions of the QG equation (3.131)

(and its simplified version (3.133)) always represent a velocity field in geostrophic balance.

But in particular, Eq. (3.131) supports a solution in the form

ψ = −
∫

U(y) dy, (5.1)

U (y) → 0 as y → ±∞, (5.2)

which according to (3.131) represent a steady zonal flow with jet-like velocity profile U(y).

Our goal is to consider a mean flow (5.1) that would give rise to a potential mimicking

the one prescribed in §4.4.1. However, unlike its counterpart from Chapter 4, the equation

governing scattering of Rossby waves on a barotropic β-plane does not involve apparent

singularities. And our interpretation of resonant over-reflection discussed in §4.4 requires

barriers trapping the wave.

As an alternative, we shall consider a two-jet configuration, where the wave can be

“trapped” between the jets acting like containing barriers. Such a setting is also motivated

physically, as two distinct well defined jets has been observed in the Antarctic Circumpolar

Current by Gille [28], multiple jets also exist in the tropical part of the Earth’s ocean, as

well as on Jupiter and Saturn.

Fig. 5.1 illustrates the schematic of the scattering problem at hand and the configu-

ration of the mean flow

U (y) = U1 (y) + U2 (y) . (5.3)

We assume that the jets’s velocity profiles U1,2(y) are single-extremum functions with

compact non-overlapping supports. We anticipate resonant over-reflection to occur when



90

c
(x)

gr

c
(y)

gr

U

U1(y)

(k,l, )u

cgr

→

Wave packet

y2y1

U2(y)

y

Figure 5.1: Formulation of the problem. Velocity profile U (y) of the two-jet formation
and a Rossby wave packet propagating with group speed ~cgr. The first jet U1 (y) provides
no critical layers while the wave encounters a pair of critical layer in the second jet U2 (y).

the first jet with velocity profile U1 (y) acts as a regular potential barrier while U2 (y)

provides both amplifying critical layers and the second barrier.

5.1.2 Free barotropic Rossby waves

We consider small amplitude solutions of the QG equation (3.133). The linearized equation

is

∂
(

∇2ψ
)

∂t
+ β

∂ψ

∂x
= 0, (5.4a)

where the prime in β was omitted. We look for the solutions of Eq. (5.4a) in form of a

harmonic wave

ψk,l = Re
[

Ck,l e
ikx+ily−iωt

]

. (5.5)

Substituting (5.5) into (5.4a) we obtain the dispersion relation for free barotropic Rossby

waves in the QG model

ω = − β k

k2 + l2
, (5.6)

where (k, l) is the horizontal wave vector and ω (k, l) is the wave frequency. The total

fluctuation field ψ (x, y, t) can be written as Fourier integral

h (x, y, t) = Re

(∫ ∫

Ck,l exp (iω (k, l) t+ ikx+ ily) dk dl

)

. (5.7)
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The dispersion formula (5.6) yields the following formulae for Rossby wave group speed:

c(x)gr =
∂ω

∂k
=
β
(

k2 − l2
)

(k2 + l2)2
, c(y)gr =

∂ω

∂l
=

2β k l

(k2 + l2)2
. (5.8)

The equality

sign
(

c(y)gr

)

= sign (k l) , (5.9)

allows us to define whether the wave propagates towards or away from the mean flow

based on its wavenumbers. Remarkably, the phase velocity of a Rossby wave in the zonal

direction

c
(x)
ph =

ω

k
= − β

k2 + l2
, (5.10)

is always negative. This proves that Rossby waves always travel westward.

5.2 Scattering equation

Here we consider scattering of free Rossby waves originating far from the jet and pene-

trating through the jet. A sketch of the problem and a typical velocity profile U (y) of a

westward current is outlined on Fig. 5.1. We shall look for the solution as a sum of the

mean flow (5.1) and a small-amplitude wave ψ̃

ψ = −
∫

U(y) dy + ψ̃. (5.11a)

Following the usual linearization routine, with application to Eq. (3.133) one derives

equation

(

∂

∂t
+ U

∂

∂x

)

(

∇2ψ̃
)

− U ′′∂ψ̃
∂x

+ β
∂ψ̃

∂x
= 0. (5.12)

which supports harmonic wave solutions

ψ̃ = Re
[

φ(y) eikx−iωt
]

. (5.13)

As the result, one obtains the following counterpart of IGW scattering equation (4.21)

(Dickinson & Clare [20]):

− φ′′ +

[

k (β − U ′′)
ω + i0− kU

+ k2
]

φ = 0, (5.14)
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where as before singularities are regularized with help of infinitesimal Rayleigh dissipation

ω → ω + i0. Similarly to Eq. (4.21) studied in Chapter 4, Eq. (4.29) can contain critical

layers yc where

U (yc) = c
(x)
ph . (5.15)

Although, no singularities of any other type (e.g. apparent singularities) are present in this

model. Observe that all eastward jets (U > 0) do not have critical layers because c
(x)
ph < 0

according to (5.10). Hence, only westward jets can effectively interact with Rossby waves.

Observe that the coefficients of (5.14) have equal limits as y → ±∞ unlike the the

coefficients of (4.21) (which involve a “step-like” function H(y)). In other words, the

dispersion relation (4.10) is the same on both sides of the mean flow. As a result, a

Rossby wave incoming from y → −∞ gives rise to a reflected wave propagating towards

y → −∞ and transmitted wave at y → +∞ with identical meridional wavenumbers.

Omitting the subscripts ′±′, we write the corresponding boundary conditions (4.27) as

φ→ eily +rk,l e
−ily as y → −∞,

φ→ tk,l e
ily as y → +∞,







(5.16)

The situation when we have a decay condition (such as (4.28)) instead of the transmitted

wave is, hence, ruled out in this case. Eq. (5.14) together with (5.16) form a well-posed

boundary-value problem which determines r and t together with the solution φ (y).

As mentioned in §2 this scattering problem has been examined by Dickinson & Clare

[20], Lindzen & Tung [55], Yamada & Okamura [89] and Benilov, et al. [5]. Asymptotic

representation of φ around critical layers, conditions for over-reflection and absorption, a

unitarity condition can be found in these papers. Here we shall only state the main results

which can also be readily obtained reapplying the procedure from Chapter 4 to Eq. (5.14).

The Wronksian Wφ = Im
(

φ′φ∗
)

of the solution φ satisfies

(Wφ)
′ = −πkQ′ |φ|2 δ (ω − kU) , (5.17)

where Q(y) = (1 + β y)− U ′ is the jet’s potential vorticity (PV) within the barotropic β-

plane model. Hence, again as in §4.2.3 wave energy is generated or dissipated at a critical

layer depending on the PV gradient. The unitarity condition in this case is

T 2 +R2 − 1 =
π

|l|
∑

c

[−Q′

|U ′| |φ|
2

]

y=yc

, (5.18)
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where R = |rk,l| and T = |tk,l|. The non-unitarity coefficient S

S2(k, l−) ≡ R2 + T 2, (5.19)

characterize the scattering properties of the mean flow as a whole. We will refer to the case

when S < 1 as to absorption of waves and to S > 1 as to amplification (or over-reflection).

As discussed in §2.1 Over-reflection of waves can be clearly related to the necessary

condition of barotropic instability (see Holton [34], Gill [27]). Stable (Q′ > 0 or β −U ′′ >

0 everywhere) westward jets absorb Rossby waves. Hence, in this case resonant over-

reflection is ruled out. On the other hand, potentially unstable jets (Q′ < 0 or β < U ′′

somewhere in the flow) can over-reflect incoming Rossby waves.

Note, that Eq. (5.14) can be re-written in the “general” form (4.62), with help of the

potential

P (y) = k2 + l2 + 1− k (U ′′ − β)

ω + i0− kU
. (5.20)

5.3 Numerical results

In this Section we present numerical evidence of waves hyper-reflected by the two-jet con-

figuration (Fig. 5.2). We anticipate that such cases can be found based on our analytical

considerations in §4.4.1. Condition (4.72) provides a clear criterion of hyper-reflection of

waves between two localized potentials that our numerical results must comply with.

5.3.1 Multiple scattering and resonant over-reflection

We carry out calculations for the two-jet configuration composed of two Bickley jets as de-

fined in (4.56) which shifted appropriately so that they can be perceived as non-overlapping

with high accuracy. We choose U2 so that expression β − U ′′
2 is negative somewhere to

ensure that critical layers of amplifying type can occur. Critical layers in U1 are not nec-

essary for hyper-reflection to occur. The sole role of U1 is to provide the second containing

potential barrier.

One may wonder whether resonant over-reflection would occur if U1 was replaced by

a landmass acting as second (totally reflecting) barrier. Formula (4.72) indicates that,

indeed, if a wave is reflected by U2 with unitary reflection coefficient r2 = 1 then it is a

resonantly over-reflected wave. As mentioned in §2.2, this scenario was analyzed Lindzen

and others [56]. Although, the studies were focused on a straightforward instability mech-

anism that exist in this case as the over-reflected wave with r2 > 1 grows exponentially
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Figure 5.2: An illustration of the resonant over-reflection of a Rossby wave (k, l) by a
two-jet configuration with no critical layers in jet U1 (y) and a pair of critical layer in jet

U2 (y) . Hence, max |U1 (y)| < c
(x)
ph < max |U2 (y)|.

when repeatedly reflected back by a rigid barrier.

We solve Eq. (5.14), (5.16) numerically using an algorithm analogous to the one

applied in §4.3. The method integrates (5.14) using Runge–Kutta method implemented in

Matlab. The integration contour steps around the singularities in the complex plain. We

choose the path to lie in upper/lower complex half plane in agreement with the Rayleigh

regularization ω → ω + i0 (see Appendix C for more details).

Individual scattering coefficients r1,2 and t1,2 of the two jets U1 and U2 were calculated

alongside with the global reflection and transmission coefficients. Regions of over-reflection

and absorption for U1, U2 (e.g. Fig. 5.3) and for the two-jet configuration as a whole were

found (e.g. Fig. 5.4). These results are similar to those presented on Fig. 4.5 in §4.3.
The following remarks on the presented results should be put forth:

• Jet U1 (y) = −0.7 sech2 (0.7y), Fig. 5.3a:

– The flow is stable (the sufficient condition β−U ′′ > 0 holds everywhere). Hence,

only absorption can occur and S ≤ 1.

– The waves with wave vectors (k, l) in the interior of the circle
∣

∣

∣
c
(x)
ph

∣

∣

∣
> max

y
|U1| =

0.7 do not encounter any critical layers as they propagate across the jet. Hence,

according to (5.18)− (5.19) S ≡ 1 there.

– Rossby waves with wave vectors outside of this region are strongly attenuated.
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(a) By the Bickley jet U1 (y) = −0.7 sech2 (0.7y).

(b) By the Bickley jet U2 (y) = −2 sech2 (2y).

Figure 5.3: Scattering of Rossby waves on the QG β-plane (β = 1) by individual jets.
Filled contour plot displays isolines of non-unitarity coefficient S (k, l).
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Figure 5.4: Scattering of Rossby waves on the QG β-plane (β = 1) by the two-jet configu-
ration U (y) = U1 (y)+U2 (y), where U1,2 are equal to those in Fig. 5.3. The plot displays
isolines of S (k; l−).

This result is in agreement with previous studies (e.g. Dickinson [19]) that

showed almost complete absorption of incident waves that are much shorter

than the width of the jet.

• Jet U1 (y) = −2 sech2 (2y), Fig. 5.3b:

– The flow is unstable (β−U ′′ < 0, when −0.31 . y . 0.31). Hence, when c
(x)
ph is

such that yc /∈ [−0.31; 0.31] absorption occurs and if not, over-reflection occurs.

– The waves satisfying condition
∣

∣

∣c
(x)
ph

∣

∣

∣ > max
y

|U2| = 2 do not have critical layers.

Hence, inside of the corresponding circle on (k, l) plane S ≡ 1.

– The region of over-reflection (the non-shaded region) is of primary interest to

us. While the non-unitarity coefficient S remains finite there (S . 8.5, hyper-

reflection is absent) we expect to find a hyper-reflected wave solution within

this region when the two-jet configuration is considered.
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Figure 5.5: The dependence of the non-unitarity coefficient S on the meridional wavenum-
ber l of the incident wave, for the two-jet configuration specified in Fig. 5.3. The latitudinal
wavenumber k is fixed (the value indicated on for each curve).

• The two-jet configuration U (y) = U1 (y + 20) + U2 (y − 20), Fig. 5.4:

– At the first sight this plot does not differ much from Fig. 5.3b. And indeed, the

regions of absorption (S < 1), over-reflection (S > 1) and neutral interaction

(S = 1) remain exactly the same. However, the “containing” region between

two jets is conductive to stronger over-reflection/absorption according to the

predictions of §4.4.

– We find a small region situated around k ≈ 0.65 and l ≈ 0.39, where over-

reflection is anomalously high (S & 10). Further computations specifically

looking for the hyper-reflected wave solution (see §4.3.1 for the algorithm) were

carried out within this region. Based on the results we conclude that for a

certain value k = K and l = L the non-unitarity coefficient S is infinite – i.e.

hyper-reflection occurs. The behavior of S as a function of l is plotted for 3

vertical (fixed k) sections of the region in Fig. 5.5.

The computations were stopped when the non-unitarity coefficient reached

values S ∼ 1500 as further numerics would not be fully reliable. The wave vector

for which hyper-reflection occurs for this two-jet configuration was found to be

K ≈ 0.6567, L ≈ 0.3926.
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– Observe that the hyper-reflected wave (K,L) is scattered by the individual

jets U1,2 with (moderate) coefficients r1,2, t1,2 satisfying the no incident wave

condition (E.10) (see §4.4.1).

5.3.2 Discussion

Hence, the mechanism of resonant over-reflection described in §4.4.1 is valid and present

in problems of multiple scattering. Hence, we assert that the results obtained in Chapter

4 are general and can be applied to any scattering problems regardless of the model.

We shall also point out that:

• Mathematically, singularities associated with critical levels are not essential for

hyper-reflection. Indeed, the “general” formulation of the problem through equation

(4.62) shows that hyper-reflection can also occur if the potentials P1,2 are analyti-

cal but complex functions. The latter property guarantees that over-reflection by a

single jet may still occur – hence, so can hyper-reflection.

• In addition to hyper-reflection caused by trapping of Rossby waves between the jets

on the β-plane described here, there are be cases of hyper-reflection of waves by

a single Bickley jet when their critical levels are located at the jets’ maxima (see

Maslowe [61]). However, the corresponding singularities are second-order poles while

both of the scattering problems we examined in this thesis (Chapters 4 and 5) involve

first-order poles only. These two cases are very different because in the former case

the conventional regularization of singularities with infinitesimal Rayleigh viscosity

no longer works.

• The reason why hyper-reflection cannot occur for a single Bickley jet and not for

a wave with a critical level located at the jet’s maximum (described by Maslowe

[61]), appears to be the symmetry in the governing Eqs. (5.14), (5.16) (about the

middle of the jet’s profile, i.e. y = 0). Recall that the scattering equations studied

in Chapters 4 and 5 do not possess such symmetry due to variable layer thickness

and two-jet profile respectively.

• One may wonder to what extent the analysis of this chapter relies on the presence of

multiple jets. To address this we investigated what happens to the resonantly over-

reflected wave when the velocity profiles merge with each other. As the distance

between jets’ maxima d is reduced there is no clear distinction between U1 and U2
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and a single asymmetric emerges. We observed numerically how the parameters

of the hyper-reflected wave smoothly adjusted to this and with the corresponding

critical layer approaching the jet’s maxima as d tends to 0 (in full agreement with the

results in [61]). Hence, it is not the two-jet configuration but rather the asymmetry

in the equations that is essential for the existence of resonant over-reflection.

5.4 Summary

We have examined linear scattering of barotropic Rossby waves by the background flow

consisting of two localised zonal jets on a QG β-plane. The equation that describes the

latitudinal structure of a propagating monochromatic wave was first derived about 60 years

ago by Kuo [45] and is very well studied. As its counterpart from Chapter 4, it contains

critical layers where absorption or over-reflection can occur depending on the sign of the

PV gradient Q′ = β − U ′′ there (Dickinson & Clare [20], Lindzen and Tung [55], Yamada

and Okamura [89]).

It was not our intention to “re-invent the wheel” but rather to test and illustrate

with an example the concept of hyper-reflection as a “resonance” between two containing

barriers proposed in §4.4. So, we investigated numerically the scattering properties of

two-jet flows with the individual profiles taken as Bickley jets (4.55). The main results

were illustrated with help of contour plots displaying isolines of the non-unitarity function

for each individual jet and the system as a whole (Fig. 5.3− 5.4).

We showed that while each individual Bickley jet cannot hyper-reflect waves (with an

exception of waves with their critical levels at the jet’s maxima [61]), the two-jet con-

figuration manifests an example of hyper-reflection caused by trapping of waves between

the individual jets playing the role of containing barriers. The cases of hyper-reflection

occurred in full agreement with condition (4.72). Hence, we have successfully validated

the results of §4.4 with this illustrative problem.

The presented results are also of interest on their own as they can be important in

understanding dynamics of multiple-jet systems observed in the Antarctic Circumpolar

Current, Earth’s tropical ocean and in the atmosphere of Jupiter (see [81], and references

therein).



Chapter 6

Resonant Over-Reflection as a

Marginally Stable Disturbance

Linear homogeneous PDEs governing the dynamics of small-amplitude harmonic pertur-

bations superimposed upon the mean flow on an unbounded domain can have two types

of solutions. Normal modes which decay to zero at infinities make up the first type. They

are typically studied in the context of linear instability problems in various models. In the

context of RGRSW model such was examined by Paldor and Ghil [70] (and predecessors)

and within the framework of a barotropic β-plane the earliest works were done by Kuo

[45], Lin [52] and Dickinson and Clare [20]. Another type of solution can be found if the

system has a restoring mechanism that supports wave motions at infinities. Such solu-

tions are studied within the framework of corresponding scattering problem and represent

the result of stationary interaction between an incoming wave and the mean flow. As we

know, this wavy solutions do not vanish at infinities and can be decomposed there into

the incident, reflected and transmitted waves.

In this section, we investigate the connection between the normal modes and scat-

tered wave solutions. We show that hyper-reflection can be perceived as a borderline

case of certain unstable normal modes (radiating instabilities). The idea is to examine

what happens with a hyper-reflected wave when its wave vector or the parameters of the

jet are perturbed. In §6.1 we keep our approach as general as possible, so that the re-

sults would be applicable to any scattering problem which can be formulated in terms

of Schrödinger equation (4.62). Then, in §6.2 general results will be illustrated by the

example of barotropic Rossby waves and jets of the QG β-plane.

100
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6.1 General case

Typically, problems of scattering of small amplitude harmonic wave disturbances by a

medium which properties vary in one direction only can be described by a single linear

homogeneous ODE. The latter can be further simplified to be written in the form of the

Schrödinger equation

− φ′′ + Pφ = l2φ, (6.1)

as it has been done in §4.4. For simplicity we assume that

P (y) → 0 as y → ±∞.

Observe that this assumption holds for quasi-geostrophic jets (Chapter 5), but does not

for ageostrophic ones (Chapters 4). However, the results obtained here can be readily

extended to the latter case of “step-like” potentials (P (y) has different limits as y → ±∞).

To describe a hyper-reflected wave, we shall use the general equation (6.1) and the

following boundary condition:

φ→ r̄ e−ily as y → −∞,

φ→ t̄ eily as y → +∞.







(6.2)

Comparing (6.2) with the standard boundary condition for scattering, (4.27)/(5.16), one

can see that the former describes reflected/transmitted waves without an incident one –

which is what hyper-reflection essentially is.

However, we must ensure that Eq. (6.2) describes two outgoing waves rather than two

waves coming from infinity and absorbed by the jet. To eliminate the latter possibility,

we require for the energy flux to be outgoing:

c(y)gr (k0,−l0) < 0, c(y)gr (k0, l0) > 0, (6.3)

where

~cgr =

(

∂ω (k, l)

∂k
,
∂ω (k, l)

∂l

)

,

is the waves’ group velocity and (k0, l0) is the wave vector of a resonantly over-reflected

wave.
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Note also that the coefficients r̄ and t̄ can be related to the original scattering coeffi-

cients R and T by

r̄ = lim
(k,l)→(k0,L)

R
√

|R|2 + |T |2
, t̄ = lim

(k,l)→(k0,l0)

T
√

|R|2 + |T |2
,

where (k0, l0) is the wave vector of the hyper-reflected wave.

Equation (6.1) and boundary condition (6.2) form and eigenvalue problem, where φ

is the eigenfunction and l is the eigenvalue. We shall distinguish two types of solutions:

hyper-reflected waves (Im l = 0) and “trapped waves” (Im l > 0). Solutions with Im l < 0,

in turn, grow as y → ±∞ [see (6.2)] and, thus, are meaningless physically.

Now, let

P = P0 + εP1 + ε2P2 + · · · ,

where P0 is the unperturbed potential for which (k0, l0) is the wave vector of the hyper-

reflected wave and ε is a small parameter. Note that P0 (and hence P1, P2, etc.) has a

number of singularities and the expansion is only applicable far from these points.

A perturbation of P should perturb the solution:

φ = φ0 + εφ1 + ε2φ2 + · · · , l = l0 + εl1 + ε2l2 + · · · , (6.4)

r̄ = r̄0 + εr̄1 + ε2r̄2 + · · · , t̄ = t̄0 + εt̄1 + ε2t̄2 + · · · . (6.5)

In the next-to-leading order, the boundary-value problem (4.62), (6.2) yields

− φ′′1 + P1φ0 + P0φ1 = l20φ1 + 2l0l1φ0. (6.6)

Recalling that

φ0 → r̄0 e
−il0y as y → −∞,

φ0 → t̄0 e
il0y as y → +∞,







one can readily show that the term involving φ0 on the right-hand side of (6.6) causes φ1

to grow linearly as y → ±∞. As a result, expansion (6.4) is valid only for |y| ≪ ε−1 and

should be treated as the inner solution of the problem.

The outer solution, in turn, is given by the boundary condition (6.2) – which represents

the asymptotics of φ in the region where |P | ≪ 1, i.e. for |y| ≫ 1. The outer and inner

solutions “overlap” for 1 ≪ |y| ≪ ε−1 – thus, for matching, the outer limit of φ1 should
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be equated to the inner limit of (6.2). This amounts to expanding (6.2) in ε, which yields

φ1 → r̄0 e
−il0y (−il1y) + r̄1 e

−il0y as y → −∞,

φ1 → t̄0 e
il0y (il1y) + t̄1 e

il0y as y → +∞.







(6.7)

The boundary-value problem (6.6)− (6.7) determines both φ1 and l1. The latter, however,

is the more important characteristic, and it can be found without the former.

To find l1, multiply (6.6) by φ0 and integrate over a contour Γ in the complex plane

that connects points −Y and Y (where Y is an undetermined large number) and steps

around the singularities as prescribed by the regularization (Appendix C). Integrating

the term involving φ′′1 by parts twice and taking into account that φ0 satisfies

−φ′′0 + P0φ0 = l20φ0,

we obtain

(

φ′0φ1 − φ0φ
′
1

)

y=Y
−
(

φ′0φ1 − φ0φ
′
1

)

y=−Y
+

∫

Γ

P1φ
2
0 dy = 2l0l1

∫

Γ

φ20 dy. (6.8)

Observe that, in the limit Y → ∞, the integral on the right-hand side of (6.8) diverges.

Thus, at this stage, we let Y be large but not infinitely so, and re-arrange the first two

terms in (6.8) using (6.7) – which yields

− il1
(

t̄20 + r̄20
)

e2il0Y +

∫

Γ

P1φ
2
0 dy → 2l0l1

∫

Γ

φ20 dy as Y → ∞. (6.9)

Next, introduce an auxiliary function

φ̂
2
=







r̄20 e
−2il0y if y ≤ 0,

t̄20 e
2il0y if y > 0,

(6.10)

in terms of which (6.9) can be re-written in the form

2l0l1

Y
∫

−Y

φ̂
2
dy − il1

(

t̄20 + r̄20
)

+

Y
∫

−Y

P1φ
2
0dy → 2l0l1

Y
∫

−Y

φ20 dy as Y → ∞.

Rearranging the integrals of φ̂
2
and φ20 as a single integral of φ20 − φ̂

2
and taking now the
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limit Y → ∞, we obtain

∞
∫

−∞

P1φ
2
0 dy = l1



2l0

∞
∫

−∞

(

φ20 − φ̂
2
)

dy + i
(

t̄20 + r̄20
)



 . (6.11)

This equation is the final product of our derivation. It relates the perturbation l1 of the

eigenvalue to the perturbation P1 of the potential. Observe that, if

P1 = O(y−1−γ) as y → ±∞,

where γ > 0, the integral on the left-hand side of (6.11) converges, and so does the integral

on its right-hand side subject to a similar restriction imposed on P0.

Most importantly, equation (6.11) is complex (as φ0 is complex, and so are, generally,

r̄0 and t̄0). Thus, for an arbitrary perturbation P1, (6.11) yields either Im l1 > 0 (trapped

wave), or Im l1 = 0 (hyper-reflected wave), or Im l1 < 0 (meaningless solution). We

conclude that hyper-reflected waves are marginal to trapped ones.

Furthermore, one one should realize that trapped waves are all unstable, i.e. hyper-

reflected waves are, in fact, marginally stable disturbances. This is somewhat of a con-

ventional belief that decaying modes are always growing in time. Although, it is not nec-

essarily true (e.g. a few analytical examples of neutral trapped modes on the barotropic

β-plane are given in [61]). Hence, a rigorous proof is needed.

We can use the dispersion relation ω (k, l) defining the wave’s frequency as a function

of the wave vector, to write down the first-order correction to ω

ω1 = c(x)gr (k0, l0) k1 + c(y)gr (k0, l0) l1 + ω̂1, (6.12)

where ω̂1 represents some other corrections due to the perturbation of other parameters

in the the dispersion relation, such as, for instance, the ocean’s depth.

Now recall that we deal with a conservative medium for which the dispersion relation

is real, and hence, ~cgr and ω̂1 are both real too (as it results from perturbations of real

parameters). Hence, (6.12) implies

Imω1 = c(y)gr (k0, l0) Im l1.

This equation shows that, since all “captured” (trapped) modes correspond to Im l1 > 0

and, according to (6.3), c
(y)
gr (k0, l0) is positive, then Imω1 > 0, i.e. these modes are indeed



105

unstable. Note that in the context of hyper-reflection, conservative media are the only

interesting ones, as dissipative media do not support propagation of waves without decay.

It is worth mentioning that captured modes are unstable due to wave generation at

the critical levels (see [62], [49], and references therein) and the exponentially decreasing

as y → ±∞ “tails” of these modes can be interpreted as waves emitted at an earlier time,

when the disturbance near the critical levels was exponentially weaker.

Finally, one may be alarmed by the fact that our analysis did not recover the scat-

tered wave solutions and in the previous chapters we found resonance over-reflection as a

part of the scattering problem. This apparent discrepancy is explained by the fact that

boundary condition (6.2) does not allow for inward propagation of the energy flux and,

hence, incoming waves. The described procedure can be modified to include an “incident-

wave perturbation” in the boundary condition. In this case the perturbed solution can be

obtained as a scattered wave with Im l1 = 0.

6.2 An example: waves and jets on the beta-plane

For illustrative purposes we present the results of the previous section to the problem from

Chapter 5, i.e. a zonal jet (not necessarily a multi jet) in the QG β-plane model.

To prove that a hyper-reflected wave is marginally unstable, it is sufficient to perturb

the zonal wavenumber

k = k0 + εk1,

and then verify that one of the two possible signs of k1 gives rise to an unstable trapped

wave mode, whereas the other does not. The jet’s shape U(y) does not need to be per-

turbed.

Note also that, in this section, we do not necessarily imply that U(y) represents a

two-jet configuration. All we assume is that a hyper-reflected wave exists, and its wave

vector is (k0, l0).

Perturbing the dispersion relation for barotropic Rossby waves (5.6) and formula for

the scattering potential (5.20), we obtain

ω1 = − βk1
k2 + l2

+
2βk0 (l0l1 + k0k1)

k2 + l2
, (6.13)

P1 = 2 (l0l1 + k0k1)

{

1 +
k20β (U ′′ − β)

[

k0β − i0 + k0U
(

k20 + l20
)]2

}

. (6.14)
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Substitution of (6.13) − (6.14) into the general formula (6.11) (where we need to replace

φ with ψ) yields

l1 =
Ik0k1

(J − I) l0 +
i
2

(

t̄20 + r̄20
) , (6.15)

where

I =

∞
∫

−∞

{

1 +
k20β (U ′′ − β)

[

k0β − i0 + k0U
(

k20 + l20
)]2

}

ψ2
0 dy,

J =

∞
∫

−∞

(

ψ2
0 − ψ̂

2
)

dy.

Again, there exists a trapped wave solution. It follows from (6.15) that, if a solution with

Im l1 > 0 does not exist for k1 > 0, it does so for k1 < 0, and vice versa. One way

or another, captured modes do exist; then it follows from (6.13) that Im l1 > 0 entails

Imω > 0 (instability).

Finally, observe that expression (6.13) can be re-written in the form

ω1 = c(x)gr (k0, l0) k1 + c(y)gr (k0, l0) l1, (6.16)

where c
(y)
gr and c

(x)
gr are the meridional and zonal components of the group velocity of

Rossby waves. Comparing (6.16) with the general expression (6.12) , one can see that ω̂1

is zero in this case.

6.3 Summary and Discussion

In §6.1 we proved that hyper-reflected waves found within any scattering problem (that

can be written as a Schrödinger equation (4.62)) are marginal to “trapped wave” modes,

i.e. unstable disturbances that are usually referred in the literature as radiating instabil-

ities. Then, in §6.2 we applied the result to the case of a zonal jet on the non-divergent

barotropic β-plane. The example illustrates how a perturbation in the zonal wavenumber

of a resonantly over-reflected wave gives rise to an unstable radiating mode.

Thus, we proved that the mean flow is linearly unstable when hyper-reflection is

present. We emphasise that this new criterion for instability was obtained through the

general approach based on the Schrödinger equation (4.62). Hence, it applies to all media

that support over-reflection of waves: the ocean, atmosphere, plasma and many other

physical settings. In particular, it is in agreement with the results of linear stability
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analysis of problems examined by Lindzen [54], Maslowe [61], and Lott et al. [57] – in

all of which hyper-reflected wave solutions are adjacent to radiating instabilities in the

parameter space.

Recall that in §2.1 we discussed the prior results in the literature (two specific setting:

vertical shear in Boussinesq fluid and zonal jet on the QG β-plane) indicate that neces-

sary conditions for over-reflection and instability often coincide. It is now clear that the

possibility of over-reflection can allow for the singular case, i.e. resonant over-reflection

to appear, and the latter accompanies instabilities.

Although presence of unstable modes does not make the corresponding scattering prob-

lem and the obtained results irrelevant (see discussion in §7.2). All major currents in the

Earth’s ocean are essentially unstable. However, they are supported by external (climatic)

forcing and the instabilities never make them disappear but only induce meanders and large

fluctuations. Taking the time average in most cases produces a clear (smeared-out) mean

flow. And even when the dynamics is dominated by the most unstable (trapped) modes,

the resonantly over-reflected waves remain to be of great interest. Unlike non-radiating

normal modes, hyper-reflected waves penetrate far away from the jet’s core and, hence,

constitute the main component of the solution in the far field.



Chapter 7

Conclusions

7.1 Summary and concluding remarks

It has been known for more than 120 years that the linearized equations for harmonic mode

perturbations superimposed upon a mean flow involve critical layer singularities where

the mean flow velocity equals the corresponding component of the wave’s phase velocity

(Rayleigh [74]). And more than 40 years ago it was established that waves penetrating a

shear current or wind interact with the flow at the critical layers which can result in their

absorption (Booker & Bretherton [8]) or amplification (Jones [40]). The latter case is best

known as over-reflection (also as over-transmission), although their original definition is

restricted to the case where the amplitude of the reflected (transmitted) wave exceeds that

of the incident wave.

Based on these ideas, we examined scattering of small-amplitude internal gravity waves

(IGWs) and Rossby waves by zonal jets in the ocean or atmosphere within the f -plane

reduced gravity rotating shallow water (RGRSW) and quasi-geostrophic (QG) β-plane

models respectively. Singularities of the corresponding governing equations (4.21) and

(5.14) were studied analytically and non-unitarity conditions (4.52) and (5.18) describing

the energy balance (hence, generation or dissipation of wave energy at the critical layers)

were derived. An important finding of this study, is the fact that in both cases it is

the sign of the derivative of the jet’s potential vorticity (PV) that determines whether

over-reflection (over-transmission) or absorption occurs.

Reflection and transmission coefficients were calculated numerically for the case of

waves scattered by a Bickley jet and by a configuration consisting of two localised Bickley

jets (§4.3 and §5.3). The numerics were carried out for a wide range of parameters which

include two wavenumbers of the incident wave (k, l), the depth change across the jet
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∆H and the jet’s width W . The integral picture of the scattering properties of a jet are

succinctly shown on contour plots displaying isolines of the non-unitarity function (e.g.

Fig. 4.5, 5.3, 5.4).

We find that jets can generate propagating wave instabilities where the “reflected” and

“transmitted” waves are spontaneously emitted without the incident one. In other words,

for the first time resonant over-reflection was found to occur within these two models. In

§4.4 we proposed a plausible physical interpretation of the phenomenon after the governing

equations (4.21) and (5.14) were transformed into a Schrödinger-type equation (4.62) with

potentials (4.63) and (5.20) respectively.

1. For the f -plane RGRSW model, we argued that hyper-reflection occurs because an

amplifying critical level is located in-between two apparent singularities. The latter

act as containing barriers which can lead to multiple over-reflection and, hence,

generation of propagating wave instabilities.

2. In case of a two-jet configuration on the QG β-plane, the individual jets themselves

play the roles of barriers. Analytical “resonance” criterion (4.72) determining oc-

currence of hyper-reflection was applied and tested. According to it a wave trapped

between the jets must regains its original amplitude and phase returning after two

successive reflections of the jet-barriers.

3. We argued that in both cases over-reflection was transformed into hyper-reflection

by an appropriate trapping mechanism (the double jet or apparent singularities).

The main result is, probably, the proof that resonantly over-reflected waves (i.e. neu-

tral radiating modes) coexist with trapped unstable modes as shown in Chapter 6. We

argued that a hyper-reflected wave is a marginally stable disturbance, a borderline case

of radiating instabilities. Hence, in the spectral region the points corresponding to hyper-

reflection form a part of the stability boundary curve. Moreover, its very existence is a

criterion for linear instability of the mean flow.

Finally, note that the opposite statement is not correct: if a jet or another system

is unstable, a hyper-reflected wave may not exist, nor be found on the neutral stability

boundary. Firstly, the system which stability is under investigation must possess a restor-

ing mechanism of certain nature (density stratification, planetary rotation, compressibility,

etc.) to support radiating modes and, in particular, emission of waves. But even if present,

resonant over-reflection may not occur.
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For example, compare three analytical studies where scattering of IGWs incident upon

a shear layer was examined within the Boussinesq model. Lott et al. [57] considered a gen-

eral case with a hyperbolic tangent velocity profile and variable Brunt–Väisälä frequency

N and found resonantly over-reflects IGWs. A specific case of this model with N = const

was previously studied by Van Duin & Kelder [85] who showed that hyper-reflection is

ruled out unless the width of the velocity “step” profile is 0. And in this (non-uniform)

limit the profile approximates the Helmholtz profile and resonant over-reflection manifests

itself for a whole range of wavenumbers (McKenzie [63], Lindzen [54]). Note, that the spe-

cific stratification that is smaller inside the shear layer than outside is the key explaining

the difference in results of [57] and [85]. This outcome is compatible with our idea that

a “trapping” mechanism (supported by the region of weak stratification in this case) is

responsible for emergence of hyper-reflection.

The importance of the obtained results is related to investigation of spontaneous emis-

sion of waves by shear flows. As discussed in §2.2 propagating wave instabilities and

resonant over-reflection provide a plausible source of waves in the ocean and atmosphere

in general.

It is instructive to put the developed ideas in perspective of other theoretical interpre-

tations of the phenomena of spontaneous emission of waves and radiating instabilities.

• First of all, throughout the thesis we extensively used the mathematical analogy

between the scattering theory for waves in fluids, on the one hand, and particles in

quantum mechanics, on the other hand (both governed by means of the Schrödinger

equation equation). Recently, these long standing ideas have been actively promoted

by Le Dizès and co-authors, who in a series of problems demonstrated that emission

of internal waves from unstable mean flow can be analogous to the radioactive decay

of nuclei in quantum mechanics ([49], and references therein). Their description of

radiative instability, based on the WKB analysis for large cross-flow wavenumber,

also allows for interpretation in terms of over-reflection.

• Another approach to understanding plane-parallel shear instabilities was proposed

by Bretherton [13]. Specifically for the baroclinic instabilities in the two-layer QG

model, he gave the following qualitative explanation. Instability is obtained in case

of interaction between two counterpropagating Rossby waves, which are located in

regions of different signs of the mean potential PV gradient and “locked on” to

each other. The original approach was recently extended by Heifetz and co-authors,

who also bring it in agreement with the over-reflection theory and rationalized the
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latter in terms of PV thinking suggested by Bretherton. The two seemingly different

paradigms illuminate very different aspects of the instability mechanism and, by

relating them, deeper understanding is achieved.

• Finally, there is a concept of negative energy waves, which was developed and flour-

ished in plasma physics, that gives insight into the linear (and nonlinear!) instability

mechanisms. The approach was later adopted for hydrodynamic stability problems

and used to explain instabilities in a number of systems (Cairns [16], Shrira et al.

[80], and references therein). As one can show, after the appropriate definition, the

negative energy waves can be found in the linearized system. However, its’ establish-

ment requires that energy is extracted from, rather than fed into the system. And,

in contrast to the usual positive energy wave, their wave amplitudes increase when

their “negative energy” is decreased (e.g. by damping). Observe that these ideas,

i.e. growth of the wave energy at the expense of the mean state and the necessity of

a dissipative process, clearly resemble those of the over-reflection. Generally, there

is a link between the concepts that would be interesting to explore in context of the

present work.

7.2 Limitations and future work

It is important to discuss the applicability and robustness of our results. The limitations

stem from a multitude of approximations and assumptions which we were forced to adopt

in order to make our models more tractable.

Here we shall list the introduced simplifications in the order they appear in the deriva-

tions in Chapters 4 and 5. We also propose that would help to validate the results and

clarify the limits of their applicability.

1. In Chapters 4 & 5 the equations governing dynamics of fluctuations superimposed

upon the mean flow were linearized. This is a crude assumption as finite amplitude

wave dynamics is essentially nonlinear. Hence, as a natural extension of the present

work it would be interesting to examine the phenomenon of resonant over-reflection

within the weakly nonlinear theory (which retains cubic terms in the scattering

equation). It may or may not rule out nonphysical infinite excitation of hyper-

reflected waves. For example, Grimshaw [31], [32] developed the weakly nonlinear

extension of extension of the model studied by McKenzie [63] and Lindzen [54]

(within which the resonant over-reflection was found). He showed that the solution
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develops a singularity in a finite time which confirmed existence of the phenomena

even within the weakly nonlinear theory.

2. Following the standard practice for linear wave analysis we transformed the problem

into the frequency-wavenumber domain (by taking Fourier transform in in zonal

coordinate and time). As the result, explicit time dependence was removed from

the equations and the steady-state problem was considered. However, to judge the

importance of hyper-reflecion phenomenon, we need an estimate of the dynamical

time scales involved. The initial problem solved for a single incident wave packet

experiencing resonant over-reflection would greatly clarify the matters.

McIntyre and Weissman [62] did this analytically (under certain assumptions) for

hyper-reflection within Lindzen’s vortex-sheet model. They found behaviour similar

to that of a forced harmonic oscillator near resonance (i.e. the response exhibits lin-

ear growth in time). A more general situation (like ours) can be treated numerically

but the overall result is expected to be similar.

The numerical solutions of the time evolution of a wave packet experiencing over-

reflected at a critical layer were obtained beforehand (e.g. in [83] for shallow water).

Similar numerical simulations of the time-dependent 1D equations should be carried

out for our problems (RSW and QG models). This can be done, e.g. with help of

the shallow water module incorporated in COMSOL Multiphysics, a finite element

package. The results could then be compared with the predictions of linear (and

nonlinear, see below) models and high-resolution numerical simulations of the wave

emission by unstable flows (such as in [87]). The numerics would also give some

insight into the time-dependent and non-linear effects in the critical layers ([60], and

references therein).

3. Throughout this thesis we approximated ocean currents with symmetric zonal jet-

like velocity profiles, which constitutes an important limiting factor of this work.

While there is no obvious reason to think that removing the symmetry assumption

would greatly improve generality of the results, the situation is different with the

assumption of zonality. Fig. 1.3 illustrates that (even after time-averaging) all major

surface ocean currents are far from being zonal. Hence, it is extremely interesting

to investigate the effect of nonzonality on the critical layer singularities in general,

and the discovered examples of hyper-reflection in particular.
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Some related work has already been done but is not presented in this thesis. For ex-

ample, we showed that when meridional tilt is introduced into the quasi-geostrophic

(QG) β-plane model, the logarithmic singularity in the solution at the critical layer

∼ x ln (x) is replaced with oscillating singularity ∼ x1+iα. Thus, the conventional

regularization of singular points in the scattering equation is no longer applicable.

However, as cited in §2.2, previous developments considering radiating instabilities

generated by non-zonal currents on the quasi-geostrophic (QG) β-plane discovered

the destabilizing effect of the meridional tilt and and resulting abundance of unsta-

ble radiating modes. Hence one may expect the hyper-reflection to exist as their

limiting case.

Curiously, non-trivial wave-current interaction (i.e. absorption or amplification of

the incident wave) is present even in absence of critical layer singularities because

the coefficients in the governing equations are complex-valued (see 5.3.2). A special

case of interaction between short barotropic Rossby waves and slow mean flow on

the quasi-geostrophic (QG) β-plane was examined analytically with help of WKB

approximation. The collective effect of Rossby-wave turbulence on the non-zonal jet

and its resulting evolution was successfully modeled with a linear PDE. The effect

was found to “smeared out” the initial mean flow profile. The solution approaches

the limiting “stationary” profile as time tends to infinity.

Another non-trivial extension of the critical layer theory was done by Jones [39] and

Grimshaw [29]. The latter introduced rotation about an axis inclined to the vertical

into the Boussinesq model which corresponds to a non-trivial vertical component of

the Coriolis force. And when the latter is strong enough, Grimshaw showed that the

critical layers turns into more complicated singularities which effect is very different

from that of the Booker & Brethertons critical layer [8]. Generally speaking, the

question of what happens to the singularity associated with the critical layers (and,

hence, our results) when the governing equations are perturbed by the introduction

of of higher-order effects, requires deeper investigation.

4. In Chapter 6 we made a conclusion that resonant over-reflection necessarily entails

instability. Hence the question arises as to how the (eventually nonlinear) evolution

of the current due to unstable modes modify the results. What will happens to the

singularities? How do the time scales of current evolution and the development of

the resonant over-reflection compare? Nonlinear effects tend to alter the mean flow
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in the vicinity of the critical layer (“nonlinear Landau damping” [60]). What will be

the characteristic time scales and how do these compare to those of resonant over-

reflection. What is the range of parameters and times where the developed theory

could be applied as it is? These very complicated and, undoubtedly, important issues

are far outside the scope of this work.

Note, that the information on wave-mean flow interaction in critical layers obtained

from the scattering problems solved in Chapters 4 & 5 cannot be directly used to model the

collective effect of waves on the mean flow similarly to how it was done in [5] and [53] (see

§1.1.4). Hyper-reflected waves have infinite reflection and transmission coefficients and,

hence, the influence of such incident wave on the flow is (unphysically) infinitely strong

at the corresponding critical layers. Nevertheless, the example of scattering of IGWs by a

shear layer of rotating stratified fluid considered by Van Duin & Kelder [85] illustrates that

over-reflection does not necessarily imply hyper-reflection. Hence, the approach used by

Benilov et al. [5] can be applied to model slow evolution of shear flows in Boussinesq fluid

(and other models) due to the collective effect of a stochastic field. Generally, a system of

nonlinear PDEs can be derived governing the evolution dynamics (which has been done

for the model in Chapter 4).

In §2.3 we remarked that Ollers et. al. in [69] probably missed out hyper-reflected

wave solutions within their model. This conjecture can be easily checked which would be

another test for the ideas of resonance over-reflection elaborated in this thesis.

Finally, it would be interesting to carry out full linear stability analysis of Eqs. (4.21)

and (5.14). Hence, to find all unstable normal modes (radiating and trapped ones) and

construct the neutral stability boundary. The latter is expected to be quite complex

and to be comprised of several neutral curves (corresponding to resonant over-reflection,

neutral trapped modes, etc.) and to possibly forms cusps at the points of their intersection

(Maslowe [61]).
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Appendix A

Asymptotic Solution around a

Critical Layer

Here we derive asymptotic solutions of Eq. (4.21) around a critical layer y = yc, where by

definition Ω (yc) = 0. So, we develop coefficients of Eq. (4.21) F (y) and Ω (y) as Taylor

series at the vicinity of yc

Ω (yc + η) =
(

Ω′)c η +O
(

η2
)

, (A.1)

F (yc + η) = F c +
(

F ′)c η +O
(

η2
)

, (A.2)

where superscript ′c′ denotes that the function is evaluated at yc and η = y − yc.

We apply Frobenius method to get two linearly independent solutions. One smooth

solution of Eq. (4.29) can be found in the form

φ1 = η

∞
∑

n=0

cnη
n, c0 = 1 (A.3)

Substituting (A.3) into Eq. (4.29) yields an infinite system of linear equations which

determines coefficients cn. In particular,

c1 =
1

2

(F ′)c

F c

(

1− (U ′)c

(U ′)c

)

. (A.4)

We derive the second linearly independent solution when we apply Liouville’s theorem

to Eq. (4.21) which states
dφ1
dη

φ2 − φ1
dφ2
dη

= F cF−1 (A.5)
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From that we acquire:

φ2 = −F cφ1

∫

F−1φ−2
1 dη =

= −F cφ1

∫

(

(F c)−1 −
(

F ′)c η + · · ·
)

η−2 (1 + c1η + · · · )−2 dη =

= 1 +

(

F ′

FU ′

)c(

η ln η +
1

2

(

1−
(

U ′)c) η

)

+O
(

η2 ln η
)

+ ..., (A.6)

where all the terms denoted as ′...′ are proportional to η and are regular; ζ (η) is a smooth

function. Thus, while the solution itself is continuous at the critical point its derivative has

an essential discontinuity there. Hence, Eq. (A.6) shows that the critical layer singularity

give rise to a logarithmic branch point in the solution of Eq. (4.21).

Two asymptotic solutions (A.3) and (A.6) allow to rederive Eq. (4.50) in a more

natural way compared to how it was done in §4.2.2. By doing so we verify correctness of

formula (4.50) and obtain better understanding of its nature. So, we calculate the value

of the jump in momentum flux across the critical layer

Wh|yc+0
yc−0 = Im

(

Fh′h∗
)∣

∣

yc+0

yc−0
=

(F ′)c

(U ′)c
|G2|2 Im (ln η)|+0

−0 . (A.7)

In §4.2.2 we discussed that infinitesimal Rayleigh wave dissipation ω → ω + i0 should

be introduce to regularise the solutions. Critical layer singularities, defined by equation

ω + iα − kU = 0, are shifted off the real axis into complex plane. With no great loss

of generality, velocity profile U (y) is assumed to be analytically continued into a small

complex strip around real axis. Then, for sufficiently small α when kUy (yc) > 0 (< 0)

the singularities are located in the upper (lower) half-plane. These points converge to the

real axis while staying at their half-plane as α becomes small. Hence, the contour along

which the solution of inviscid problem (4.21) shall be continued is chosen so that critical

layer singularities of the viscous problem do not intersect the contour as α tends to 0. The

latter specifies a choice of the logarithmic branch in (A.6). Hence,

Im (ln η)|+0
−0 = sign

(

k
(

U ′)c)π. (A.8)

Finally, substituting (A.8) into (A.7) and keeping in mind the equality sign (k) = sign (U c)

we obtain formula (4.50) again

Wh|yc+0
yc−0 = sign (U c) π

(F ′)c

|(U ′)c| |G2|2 = sign (U c)π

(

F ′

|U ′| |h|
2

)∣

∣

∣

∣

y=yc

. (A.9)
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Here we used the fact that φ1 (yc) = 0 and φ2 (yc) = 1 and that

(

|h|2
)∣

∣

∣

y=yc
= |G2|2 . (A.10)



Appendix B

The Unitarity Condition (4.52)

Multiplying (4.44) by h∗ (where the asterisk denotes complex conjugate), taking the imag-

inary part, and integrating along the y-axis we obtain

Im

∞
∫

−∞

(

Fh′
)′
h∗dy +

∞
∫

−∞

Im

(

kF ′

ω + i0− kU
− k2F

)

|h|2 dy = 0, (B.1)

where F is given as in (4.45). With help of integration by parts and the boundary condi-

tions (4.27), the first term simplifies to

Im

∞
∫

−∞

(

Fh′
)′
h∗dy =

l+H+T
2 + l−H−

(

R2 − 1
)

ω2 − 1
−

∞
∫

−∞

Im (F )
∣

∣h′
∣

∣

2
dy. (B.2)

where R = |rk,l| and T = |tk,l|.
Only singular points yc and ya can give non-zero contribution to the integrals in (B.1)

and (B.2). To evaluate it we shall use the formulae

Im
1

f(y)± i0
= ∓πδ[f(y)] = ∓π

∑

n

δ(y − yn)

|f ′(yn)|
,

∞
∫

−∞

δ[f(y)]G(y) dy =
∑

n

G(yn)

|f ′(yn)|
,

∞
∫

−∞

δ′[f(y)]G(y) dy = −
∑

n

G′(yn)
|f ′(yn)|

,

where yn are the roots of the equation f(y) = 0. Applying the above formulae to the
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integrals in (B.1) and (B.2), we obtain

l+H+ |T |2 + l−H−
(

|R|2 − 1
)

ω2 − 1
= πk

∑

c

(

F ′ |h|2
|kU ′|

)c

− π
∑

a















Ha sign (Ωa)

(

|h′|2 +
(

k |h|2
Ω

)′

+ k2 |h|2
)a

|A′|a















, (B.3)

where indices are also used ′c′ and ′a′ to number the critical layers and apparent singular-

ities respectively; Ω and A are as defined in (4.30).

Using all these we show that at ya

(

∣

∣h′
∣

∣

2
+

(

k |h|2
Ω

)′

+ k2 |h|2
)a

=

(

∣

∣h′
∣

∣

2
+
k

Ω

(

|h|2
)′

− k (Ω′)

(Ω)2
|ha|2 + k2 |ha|2

)a

=

=
∣

∣

(

h′
)a∣
∣

2 − p

(

(

|h|2
)′
)a

+ p2 |ha|2 =
∣

∣

(

h′
)a − pha

∣

∣

2
,

where we used the definition of p in (4.37) and the definition of the apparent singularity

in the form (4.38) The latter is identically zero at ya as the asymptotics (4.41) and (4.35)

of the solution as y → ya show. Finally,

[

∣

∣h′
∣

∣

2
+

(

k |h|2
ω − lU

)′

+ k2 |h|2
]

y=ya

= 0.

And as a result, the second term on the right-hand side of (B.3) vanishes, and (B.3)

reduces to (4.52) as required.



Appendix C

The Numerical Method for

Problem (4.21),(4.27)/(4.28)

Without loss of generality we describe the numerical scheme for a scattering problem

where the incident waves propagates towards the zonal jet from y = −∞. Integration

starts from large positive values of y (y → +∞) towards y → −∞ using the boundary

condition corresponding to a transmitted wave of unit amplitude

h→ eil+y as y → +∞, (C.1)

or a decaying wave

h→ e−|l+|y as y → +∞, (C.2)

instead of the original condition as in (4.27) / (4.28). Then Eq. (4.21) is integrated back-

wards along the y-axis using a 7−8 order Runge–Kutta algorithm implemented in Matlab.

The step size is automatically reduced to keep the desired accuracy.

In absence of singular points, a sufficiently large negative y can be reached where the

solution can be decomposed uniquely into an incident and a reflected wave of amplitudes

a and b respectively

h→ a eil−y +b e−il−y as y → −∞. (C.3)

Then, using linearity of Eq. (4.21) we normalize the incident wave to unity and find

reflection and transmission coefficients as

rk,l =
b

a
, tk,l =

1

a
. (C.4)
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However, Eq. (4.21) supports two types of singularities ya and yc. Hence, we need

to modify the simple approach described above to account for it. We introduce two

modifications based on the regularization discussed in §4.2.2 and in Appendix A in

order to integrate past the singular points.

The first method introduces a small imaginary component into the wave frequency ω →
ω + iε, ε = 10−8 which acts as a small linear Rayleigh damping. So, the singularities are

shifted off the real axis which enables integration. It can be shown that this approximation

for Eq. (4.44) entails error of order O (
√
ε) in the solution h (y) as well as the scattering

coefficients r and t. Further decrease in ε brings the correction term in ω2 down to the

order of the machine epsilon
(

10−16
)

and makes results of the regularization unreliable.

A more accurate modification lies in stepping around singular points in the complex

plain. Mathematically it implies analytical continuation of the coefficients and solutions

of Eq. (4.21) into the plane of complex y and modifying the integration contour so that it

“misses” the singular points. This approach was initially used by Boyd [11] for a Chebyshev

collocation method and by Benilov & Sakov [6] for the Runge–Kutta method (as in this

work).

One would still have to keep the endpoints fixed, and also make sure that the modified

path can be moved back to the real axis without touching any of the critical levels (the

apparent singularities are unimportant in this case, as the solution is regular there). This

would that the solution would arrive at its final destination with the correct value.

For a given incident wave we resolve equations A = 0 and Ω = 0 with respect to y.

Typically, four singular points arise for the jets given by (4.55) or similar: two critical levels

and two apparent singularities. Then, we construct the integration contour consisting of

straight line segments along the y-axis and semicircles of an appropriate radius.

The integration path (Fig. C.1) must satisfy the following requirements:

• Therefore, the semicircles around critical layers yc are located in in the upper half-

plane when kU c
y < 0 and in the lower half-plane when kU c

y > 0. can only be moved

downwards and upwards, respectively. This guarantees that the modified path can

be moved back to the real axis without touching any of the critical levels. Because

the term i0 in the equation (4.32) moves critical layer singularities just above and

just below the real axis for for kU ′(yc) > 0 and kU ′(yc) < 0 respectively.

• The choice of how apparent singularities are stepped around can be arbitrary as the

solution is regular there (see §4.2.2). We fix semicircles to lie in the upper half-plane.
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• The analytical continuation of coefficients of (4.21) can have additional non-physical

singularities at complex values of y. We need to make sure that the modified path

can be moved back to the real axis without touching them. The Bickley jet (4.55),

for example, is singular at

y = 1
2 iπW, ± 3

2 iπW, ± 5
2 iπW...

Note that these are easily avoided by keeping the path of integration close to the

real axis (radius of semicircles r ∼ 10−3 was used).

ykU >0y

kU 0y<

Figure C.1: Typical integration contour. As before, apparent singularities are represented
by yellow circles; critical layers by green circles.

Both solvers underwent all usual numerical testing such as change of input parameters,

integration limits (as the integration interval (−∞; +∞) is replaced with [−yinf ; yinf ]),
relative and absolute tolerances specified in Runge–Kutta algorithm (and hence, the step

of integration), etc. Several numerical solutions of the same problem obtained with the

two above-mentioned methods were compared and the difference O
(

10−4
)

is observed. It

is consistent with the error estimate for the first method
(√
ε = 10−4

)

. While the second

method is exact and the discretization error in Runge–Kutta algorithm was set to be 10−8.

For waves short compared to the meridional scale of the jet (k2 → ∞), WKB approxi-

mation for the solution of Eq. (4.21) can be found far from singular and so-called turning

points or in their absence (see Appendix D). We compared numerical result for short

waves (k ≫ 1 and
∣

∣

∣c
(x)
ph

∣

∣

∣ > |U | so that critical layers are ruled out) with WKB asymptotic

solutions and found them to be in good agreement.

Finally, numerical solutions have all the features predicted by the theory described

in §4.2. For instance, the solution remains regular around ya singularities and does not

depend on the location of the bypass contour (when the second method is used). The

derivative of the solution h′ blows up around yc singularities and Wronskian Wh, which is

constant elsewhere, undergoes a jump. If the bypass around critical layers is incorrectly

chosen to lie in the wrong complex half-plane then the jump in Wronskian Wh changes
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sign.

Therefore, the ability of the numerical methods to integrate the boundary-value prob-

lem (4.21) , (4.27) / (4.28) is well tested and the results are reliable. The results obtained

using the more accurate complex bypass approach were reported throughout this work.



Appendix D

WKB Solution of Eq. (4.21)

Here we shall derive WKB approximation for two linearly independent solutions of Eq.

(4.21) for the case y-scale of the mean flow is much longer than x-wavelength of an incident

wave (or equivalently k → ∞). We rewrite Eq. (4.21) in a form explicitly containing small

parameter in front of the highest derivative

1

k2

(

F̃ h′
)′

+





F̃ ′

k2
(

c
(x)
ph − U

) − F̃ + 1



h = 0, (D.1)

where F̃ = k2F = H
(

c
(x)
ph

−U
)2

+ 1
k2

(U ′−1)
. Making the substitution

h (y) = exp

(

k

( ∞
∑

n=0

1

kn
Sn (y)

))

(D.2)

Eq. (D.1) yields

F̃





( ∞
∑

n=0

S′
n

kn

)2

+
1

k

∞
∑

n=0

S′′
n

kn



+
F̃ ′
k

( ∞
∑

n=0

S′′
n

kn

)

+
1

k2
F̃ ′

(

c
(x)
ph − U

) +
(

1− F̃
)

= 0. (D.3)

Developing F̃ and F̃ ′ as series in 1
k2

and assembling equal-order terms we obtain an infinite

chain of first-order differential equations for functions Sn (y). We are mostly interested in

S0 (y) and S1 (y) because, as usual, the former corresponds to the fast oscillatory motion

when the latter represents the leading amplitude term. When those two are known, two
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linearly independent solutions of (D.1) are obtained in the form

h1,2 (y) =
[

F̃0

(

1− F̃0

)]−1/4
exp

(

±ik

∫

√

1

F̃0

− 1dy

)

, (D.4)

where F̃0 denotes F̃
∣

∣

∣

k=∞
= H

(c
(x)
ph

−U)2
. This WKB approximation is irrelevant in the

vicinity of critical points of Eq. (4.21) as well as near the turning points.



Appendix E

The Scattering Coefficients for a

Two-Jet Configuration

Our goal here is to derive global scattering coefficients t and r of the system shown on

Fig. 4.10 given the transmission and reflection coefficients t1,2 and r1,2 of the potentials

P1,2 (see Eq. (4.67)) and amplification characteristic ∆ > 0.

First of all, we investigate how the i∆ δ (x)ψ term alter free wave solution
[

x+1 ;x
−
2

]

between the potentials. Suppose

Ψ = A eikx+B e−ikx if x+1 < x < 0,

Ψ = C eikx+D e−ikx if 0 < x < x−2 ,
(E.1)

where A, B, C and D are undetermined constants. Integrating Eq. (4.64) from −ε to +ε

and taking the limit ε→ 0 yields

Ψ (+0) = Ψ (−0) , Ψ′ (+0)−Ψ′ (−0) = i∆Ψ (0) .

With help of (E.2) coefficients A and B can be found in terms of C and D

A = ∆
2kD +

(

1 + ∆
2k

)

C,

B = − ∆
2kC +

(

1− ∆
2k

)

D.
(E.2)

Lets construct the incident and reflected waves that correspond to the transmitted
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wave t2 e
ikx. Potential P2 works in agreement with

Ψ = t2 e
ikx if x > x+2 ,

Ψ = eikx+r2 e
−ikx if 0 < x < x−2 ,

(E.3)

Then, with help of (E.1), (E.2) for a solution satisfying (E.3) one can find the solution left

of the amplifier

Ψ = (1 + ∆′) eikx+(r2 −∆′) e−ikx if x+1 < x < 0, (E.4)

where notation ∆′ = ∆
2k (1 + r2) was introduced.

We shall find the solution of the scattering problem with P1 (y) which give rise to (E.4)

in the region x+1 < x < 0. Using linearity of Eq. (4.64) and reality of its coefficients (which

implies that Ψ∗ is a solution as long as Ψ is) we deduce two auxiliary solutions

Ψ = (1 + ∆′) eikx if x+1 < x < 0,

Ψ = 1
t1
(1 + ∆′) eikx+ r1

t1
(1 + ∆′) e−ikx if x < x−1 ,

(E.5)

Ψ = (r2 −∆′) e−ikx if x+1 < x < 0,

Ψ =
r∗1
t∗1

(r2 −∆′) eikx+ 1
t∗1
(r2 −∆′) e−ikx if x < x−1 .

(E.6)

Their sum provides the matched solution

Ψ = I eikx+H e−ikx if x < x−1 ,

Ψ = t2 e
ikx if x > x+2 ,

(E.7)

where

I = 1
t1
(1 + ∆′) + r∗1

t∗1
(r2 −∆′) ,

H = 1
t∗1
(r2 −∆′) + r1

t1
(1 +∆′) .

(E.8)

Therefore, the requirement that the media spontaneously radiates waves I = 0 is equivalent

to

(t∗1 + r∗1t1r2) + ∆′ (1 + r2) (t
∗
1 − r∗1t1) = 0. (E.9)

The amplifying/absorbing represented by term i∆ δ (x)ψ in Eq. (4.64) can be “built

into” the potentials P1,2. Then no incident wave condition (E.9) simplifies to

t∗1 + t1r
∗
1r2 = 0. (E.10)
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Also, the global scattering coefficients can be obtained in a simple form

r =
t∗1r1 + t1r2
t∗1 + t1r

∗
1r2

, t =
|t1|2 t2

(t∗1 + t1r
∗
1r2)

(E.11)

Note that similar calculations can be done when we use “from-right-to-left” coefficients

r′1, t
′
1, for the first barrier P1 (see (4.70)) instead of the standard “left-to-right” ones r1,

t1. In this case no incident wave condition (E.10) transforms into

r′1r2 = 1, (E.12)

and the global scattering coefficients are

r =
t′1
(

r2 − (r′1)
∗)

(t′1)
∗ (1− r′1r2)

, t =
t2

(

1− |r′1|2
)

(t′1)
∗ (1− r′1r2)

. (E.13)
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